Lipid-Based Nanoparticles for Vaccine Applications

  • Rui Kuai
  • Lukasz J. Ochyl
  • Anna Schwendeman
  • James J. Moon
Part of the Biosystems & Biorobotics book series (BIOSYSROB, volume 9)


Currently available vaccine adjuvants are ineffective against a wide range of infectious pathogens as well as cancers. Therefore, there is a critical demand for new vaccine strategies that can elicit potent cellular and humoral immune responses. Liposomes have been widely examined as vaccine delivery systems because of their safety, low toxicity, and ease of scale-up. However, successful clinical translation of liposomal vaccines has been hampered by their limited potency to induce strong T and B cell responses. In this chapter, we will present two classes of lipid-based nanoparticle systems designed to address limitations of liposomal vaccines and discuss their potential as vaccine delivery systems. The first class of lipid-based nanoparticles presented in this chapter is termed interbilayer-crosslinked multilamellar vesicles. These novel vaccine nanoparticles are stable vehicles that can effectively deliver antigens and adjuvant molecules to antigen-presenting cells in lymphoid tissues and induce robust T and B cell immune responses in vivo. The second class of vaccine nanoparticles is lipoproteins composed of endogenous proteins and lipids. Applications of lipoproteins for vaccine delivery have recently gained much attention due to their safety and multi-faceted functions as endogenous drug delivery vehicles. We provide an overview on the latest advances in this rapidly evolving interdisciplinary area of research, and we discuss biomaterial-based innovations enabled by nanotechnology for improving vaccine design and development.


Biomaterials Vaccine Nanoparticles Nanotechnology Lipid Antigen Adjuvant 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pulendran, B., Ahmed, R.: Immunological mechanisms of vaccination. Nat. Immunol. 12, 509–517 (2011)CrossRefGoogle Scholar
  2. 2.
    Swartz, M.A., Hirosue, S., Hubbell, J.A.: Engineering approaches to immunotherapy. Sci. Transl. Med. 4, 148–149 (2012)CrossRefGoogle Scholar
  3. 3.
    Moon, J.J., Huang, B., Irvine, D.J.: Engineering nano- and microparticles to tune immunity. Adv. Mater. 24, 3724–3746 (2012)CrossRefGoogle Scholar
  4. 4.
    Irvine, D.J., Swartz, M.A., Szeto, G.L.: Engineering synthetic vaccines using cues from natural immunity. Nat. Mater. 12, 978–990 (2013)CrossRefGoogle Scholar
  5. 5.
    Sahdev, P., Ochyl, L.J., Moon, J.J.: Biomaterials for nanoparticle vaccine delivery systems. Pharm. Res. 31, 2563–2582 (2014)CrossRefGoogle Scholar
  6. 6.
    Reddy, S.T., van der Vlies, A.J., Simeoni, E., Angeli, V., Randolph, G.J., O’Neil, C.P., Lee, L.K., Swartz, M.A., Hubbell, J.A.: Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat. Biotechnol. 25, 1159–1164 (2007)CrossRefGoogle Scholar
  7. 7.
    Zhuang, Y., Ma, Y., Wang, C., Hai, L., Yan, C., Zhang, Y., Liu, F., Cai, L.: PEGylated cationic liposomes robustly augment vaccine-induced immune responses: Role of lymphatic trafficking and biodistribution. Journal of Controlled Release 159, 135–142 (2012)CrossRefGoogle Scholar
  8. 8.
    Badiee, A., Khamesipour, A., Samiei, A., Soroush, D., Shargh, V.H., Kheiri, M.T., Barkhordari, F., McMaster, W.R., Mahboudi, F., Jaafari, M.R.: The role of liposome size on the type of immune response induced in BALB/c mice against leishmaniasis: rgp63 as a model antigen. Experimental Parasitology 132, 403–409 (2012)CrossRefGoogle Scholar
  9. 9.
    Nakamura, T., Yamazaki, D., Yamauchi, J., Harashima, H.: The nanoparticulation by octaarginine-modified liposome improves alpha-galactosylceramide-mediated antitumor therapy via systemic administration. Journal of Controlled Release 171, 216–224 (2013)CrossRefGoogle Scholar
  10. 10.
    Kwon, Y.J., James, E., Shastri, N., Frechet, J.M.: In vivo targeting of dendritic cells for activation of cellular immunity using vaccine carriers based on pH-responsive microparticles. Proc. Natl. Acad. Sci. U. S. A. 102, 18264–18268 (2005)CrossRefGoogle Scholar
  11. 11.
    Cui, L., Cohen, J.A., Broaders, K.E., Beaudette, T.T., Frechet, J.M.: Mannosylated dextran nanoparticles: a pH-sensitive system engineered for immunomodulation through mannose targeting. Bioconjug. Chem. 22, 949–957 (2011)CrossRefGoogle Scholar
  12. 12.
    Trumpfheller, C., Longhi, M.P., Caskey, M., Idoyaga, J., Bozzacco, L., Keler, T., Schlesinger, S.J., Steinman, R.M.: Dendritic cell-targeted protein vaccines: a novel approach to induce T-cell immunity. Journal of Internal Medicine 271, 183–192 (2012)CrossRefGoogle Scholar
  13. 13.
    Burgdorf, S., Scholz, C., Kautz, A., Tampe, R., Kurts, C.: Spatial and mechanistic separation of cross-presentation and endogenous antigen presentation. Nat. Immunol. 9, 558–566 (2008)CrossRefGoogle Scholar
  14. 14.
    Demento, S.L., Cui, W., Criscione, J.M., Stern, E., Tulipan, J., Kaech, S.M., Fahmy, T.M.: Role of sustained antigen release from nanoparticle vaccines in shaping the T cell memory phenotype. Biomaterials 33, 4957–4964 (2012)CrossRefGoogle Scholar
  15. 15.
    Moon, J.J., Suh, H., Polhemus, M.E., Ockenhouse, C.F., Yadava, A., Irvine, D.J.: Antigen-displaying lipid-enveloped PLGA nanoparticles as delivery agents for a Plasmodium vivax malaria vaccine. PLoS One 7, e31472 (2012)CrossRefGoogle Scholar
  16. 16.
    Bershteyn, A., Hanson, M.C., Crespo, M.P., Moon, J.J., Li, A.V., Suh, H., Irvine, D.J.: Robust IgG responses to nanograms of antigen using a biomimetic lipid-coated particle vaccine. J. Control. Release 157, 354–365 (2012)CrossRefGoogle Scholar
  17. 17.
    Kamath, A.T., Mastelic, B., Christensen, D., Rochat, A.F., Agger, E.M., Pinschewer, D.D., Andersen, P., Lambert, P.H., Siegrist, C.A.: Synchronization of dendritic cell activation and antigen exposure is required for the induction of Th1/Th17 responses. Journal of Immunology 188, 4828–4837 (2012)CrossRefGoogle Scholar
  18. 18.
    Andrews, C.D., Huh, M.S., Patton, K., Higgins, D., Van Nest, G., Ott, G., Lee, K.D.: Encapsulating immunostimulatory CpG oligonucleotides in listeriolysin O-liposomes promotes a Th1-type response and CTL activity. Molecular Pharmaceutics 9, 1118–1125 (2012)Google Scholar
  19. 19.
    Nakamura, T., Moriguchi, R., Kogure, K., Shastri, N., Harashima, H.: Efficient MHC class I presentation by controlled intracellular trafficking of antigens in octaarginine-modified liposomes. Molecular Therapy 16, 1507–1514 (2008)CrossRefGoogle Scholar
  20. 20.
    Hu, Y., Litwin, T., Nagaraja, A.R., Kwong, B., Katz, J., Watson, N., Irvine, D.J.: Cytosolic delivery of membrane-impermeable molecules in dendritic cells using pH-responsive core-shell nanoparticles. Nano Lett. 7, 3056–3064 (2007)CrossRefGoogle Scholar
  21. 21.
    Hu, Y., Atukorale, P.U., Lu, J.J., Moon, J.J., Um, S.H., Cho, E.C., Wang, Y., Chen, J., Irvine, D.J.: Cytosolic delivery mediated via electrostatic surface binding of protein, virus, or siRNA cargos to pH-responsive core-shell gel particles. Biomacromolecules 10, 756–765 (2009)CrossRefGoogle Scholar
  22. 22.
    Wilson, J.T., Keller, S., Manganiello, M.J., Cheng, C., Lee, C.C., Opara, C., Convertine, A., Stayton, P.S.: pH-Responsive nanoparticle vaccines for dual-delivery of antigens and immunostimulatory oligonucleotides. ACS Nano 7, 3912–3925 (2013)CrossRefGoogle Scholar
  23. 23.
    Moon, J.J., Suh, H., Bershteyn, A., Stephan, M.T., Liu, H., Huang, B., Sohail, M., Luo, S., Um, S.H., Khant, H., Goodwin, J.T., Ramos, J., Chiu, W., Irvine, D.J.: Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses. Nature Materials 10, 243–251 (2011)CrossRefGoogle Scholar
  24. 24.
    Kumar, H., Kawai, T., Akira, S.: Pathogen Recognition by the Innate Immune System. International Reviews of Immunology 30, 16–34 (2011)CrossRefGoogle Scholar
  25. 25.
    Banchereau, J., Steinman, R.M.: Dendritic cells and the control of immunity. Nature 392, 245–252 (1998)CrossRefGoogle Scholar
  26. 26.
    Palm, N.W., Medzhitov, R.: Pattern recognition receptors and control of adaptive immunity. Immunological Reviews 227, 221–233 (2009)CrossRefGoogle Scholar
  27. 27.
    Joffre, O.P., Segura, E., Savina, A., Amigorena, S.: Cross-presentation by dendritic cells. Nature Reviews Immunology 12, 557–569 (2012)CrossRefGoogle Scholar
  28. 28.
    Barry, M., Bleackley, R.C.: Cytotoxic T lymphocytes: All roads lead to death. Nature Reviews Immunology 2, 401–409 (2002)Google Scholar
  29. 29.
    Villadangos, J.A., Schnorrer, P.: Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nature Reviews Immunology 7, 543–555 (2007)CrossRefGoogle Scholar
  30. 30.
    Heath, W.R., Belz, G.T., Behrens, G.M., Smith, C.M., Forehan, S.P., Parish, I.A., Davey, G.M., Wilson, N.S., Carbone, F.R., Villadangos, J.A.: Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol. Rev. 199, 9–26 (2004)CrossRefGoogle Scholar
  31. 31.
    Yuba, E., Harada, A., Sakanishi, Y., Watarai, S., Kono, K.: A liposome-based antigen delivery system using pH-sensitive fusogenic polymers for cancer immunotherapy. Biomaterials 34, 3042–3052 (2013)CrossRefGoogle Scholar
  32. 32.
    Torchilin, V.P.: Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 4, 145–160 (2005)CrossRefGoogle Scholar
  33. 33.
    Gregoriadis, G., Gursel, I., Gursel, M., McCormack, B.: Liposomes as immunological adjuvants and vaccine carriers. Journal of Controlled Release 41, 49–56 (1996)CrossRefGoogle Scholar
  34. 34.
    Vangala, A., Bramwell, V.W., McNeil, S., Christensen, D., Agger, E.M., Perrie, Y.: Comparison of vesicle based antigen delivery systems for delivery of hepatitis B surface antigen. J. Control. Release 119, 102–110 (2007)CrossRefGoogle Scholar
  35. 35.
    Steers, N.J., Peachman, K.K., McClain, S., Alving, C.R., Rao, M.: Liposome-encapsulated HIV-1 Gag p24 containing lipid A induces effector CD4 + T-cells, memory CD8 + T-cells, and pro-inflammatory cytokines. Vaccine 27, 6939–6949 (2009)CrossRefGoogle Scholar
  36. 36.
    Bhowmick, S., Mazumdar, T., Sinha, R., Ali, N.: Comparison of liposome based antigen delivery systems for protection against Leishmania donovani. J. Control. Release 141, 199–207 (2010)CrossRefGoogle Scholar
  37. 37.
    Kim, M., Song, L., Moon, J., Sun, Z.Y., Bershteyn, A., Hanson, M., Cain, D., Goka, S., Kelsoe, G., Wagner, G., Irvine, D., Reinherz, E.L.: Immunogenicity of membrane-bound HIV-1 gp41 MPER segments is dominated by residue accessibility and modulated by stereochemistry. J. Biol. Chem. (2013)Google Scholar
  38. 38.
    Allen, T.M., Mumbengegwi, D.R., Charrois, G.J.: Anti-CD19-targeted liposomal doxorubicin improves the therapeutic efficacy in murine B-cell lymphoma and ameliorates the toxicity of liposomes with varying drug release rates. Clin. Cancer Res. 11, 3567–3573 (2005)CrossRefGoogle Scholar
  39. 39.
    Cashion, M.P., Long, T.E.: Biomimetic Design and Performance of Polymerizable Lipids. Accounts of Chemical Research 42, 1016–1025 (2009)CrossRefGoogle Scholar
  40. 40.
    Moon, J.J., Suh, H., Li, A.V., Ockenhouse, C.F., Yadava, A., Irvine, D.J.: Enhancing humoral responses to a malaria antigen with nanoparticle vaccines that expand T-fh cells and promote germinal center induction. Proceedings of the National Academy of Sciences of the United States of America 109, 1080–1085 (2012)CrossRefGoogle Scholar
  41. 41.
    Li, A.V., Moon, J.J., Abraham, W., Suh, H.Y., Elkhader, J., Seidman, M.A., Yen, M.M., Im, E.J., Foley, M.H., Barouch, D.H., Irvine, D.J.: Generation of Effector Memory T Cell-Based Mucosal and Systemic Immunity with Pulmonary Nanoparticle Vaccination. Science Translational Medicine 5 (2013)Google Scholar
  42. 42.
    DeMuth, P.C., Moon, J.J., Suh, H., Hammond, P.T., Irvine, D.J.: Releasable layer-by-layer assembly of stabilized lipid nanocapsules on microneedles for enhanced transcutaneous vaccine delivery. ACS Nano 6, 8041–8051 (2012)CrossRefGoogle Scholar
  43. 43.
    Biochemistry of Lipids, Lipoproteins and Membranes, 5th Edition, pp. 1–640 (2008)Google Scholar
  44. 44.
    Plasma lipoproteins: composition, structure and biochemistryGoogle Scholar
  45. 45.
    Rensen, P.C.N., de Vrueh, R.L.A., Kuiper, J., Bijsterbosch, M.K., Biessen, E.A.L., van Berkel, T.J.C.: Recombinant lipoproteins: lipoprotein-like lipid particles for drug targeting. Advanced Drug Delivery Reviews 47, 251–276 (2001)CrossRefGoogle Scholar
  46. 46.
    Ng, K.K., Lovell, J.F., Zheng, G.: Lipoprotein-Inspired Nanoparticles for Cancer Theranostics. Accounts of Chemical Research 44, 1105–1113 (2011)CrossRefGoogle Scholar
  47. 47.
    Vickers, K.C., Palmisano, B.T., Shoucri, B.M., Shamburek, R.D., Remaley, A.T.: MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nature Cell Biology 13, 423–433 (2011)CrossRefGoogle Scholar
  48. 48.
    Krieg, A.M.: Toll-like receptor 9 (TLR9) agonists in the treatment of cancer. Oncogene 27, 161–167 (2008)CrossRefGoogle Scholar
  49. 49.
    Goldstein, M.J., Varghese, B., Brody, J.D., Rajapaksa, R., Kohrt, H., Czerwinski, D.K., Levy, S., Levy, R.: A CpG-loaded tumor cell vaccine induces antitumor CD4 + T cells that are effective in adoptive therapy for large and established tumors. Blood 117, 118–127 (2011)CrossRefGoogle Scholar
  50. 50.
    Houot, R., Levy, R.: T-cell modulation combined with intratumoral CpG cures lymphoma in a mouse model without the need for chemotherapy. Blood 113, 3546–3552 (2009)CrossRefGoogle Scholar
  51. 51.
    Fischer, N.O., Blanchette, C., Rasley, A.: Enhancing the efficacy of innate immune agonists: could nanolipoprotein particles hold the key? Nanomedicine 9, 369–372 (2014)CrossRefGoogle Scholar
  52. 52.
    Weilhammer, D.R., Blanchette, C.D., Fischer, N.O., Alam, S., Loots, G.G., Corzett, M., Thomas, C., Lychak, C., Dunkle, A.D., Ruitenberg, J.J., Ghanekar, S.A., Sant, A.J., Rasley, A.: The use of nanolipoprotein particles to enhance the immunostimulatory properties of innate immune agonists against lethal influenza challenge. Biomaterials 34, 10305–10318 (2013)CrossRefGoogle Scholar
  53. 53.
    Xu, Z.H., Ramishetti, S., Tseng, Y.C., Guo, S.T., Wang, Y.H., Huang, L.: Multifunctional nanoparticles co-delivering Trp2 peptide and CpG adjuvant induce potent cytotoxic T-lymphocyte response against melanoma and its lung metastasis. Journal of Controlled Release 172, 259–265 (2013)CrossRefGoogle Scholar
  54. 54.
    Aguilar, J.C., Rodriguez, E.G.: Vaccine adjuvants revisited. Vaccine 25, 3752–3762 (2007)CrossRefGoogle Scholar
  55. 55.
    Fischer, N.O., Infante, E., Ishikawa, T., Blanchette, C.A., Bourne, N., Hoeprich, P.D., Mason, P.W.: Conjugation to Nickel-Chelating Nanolipoprotein Particles Increases the Potency and Efficacy of Subunit Vaccines to Prevent West Nile Encephalitis. Bioconjugate Chemistry 21, 1018–1022 (2010)CrossRefGoogle Scholar
  56. 56.
    Blanchette, C.D., Fischer, N.O., Corzett, M., Bench, G., Hoeprich, P.D.: Kinetic Analysis of His-Tagged Protein Binding to Nickel-Chelating Nanolipoprotein Particles. Bioconjugate Chemistry 21, 1321–1330 (2010)CrossRefGoogle Scholar
  57. 57.
    Fischer, N.O., Rasley, A., Corzett, M., Hwang, M.H., Hoeprich, P.D., Blanchette, C.D.: Colocalized Delivery of Adjuvant and Antigen Using Nanolipoprotein Particles Enhances the Immune Response to Recombinant Antigens. Journal of the American Chemical Society 135, 2044–2047 (2013)CrossRefGoogle Scholar
  58. 58.
    Barral, D.C., Brenner, M.B.: CD1 antigen presentation: how it works. Nature Reviews Immunology 7, 929–941 (2007)CrossRefGoogle Scholar
  59. 59.
    Brennan, P.J., Brigl, M., Brenner, M.B.: Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nature Reviews Immunology 13, 101–117 (2013)CrossRefGoogle Scholar
  60. 60.
    Vivier, E., Ugolini, S., Blaise, D., Chabannon, C., Brossay, L.: Targeting natural killer cells and natural killer T cells in cancer. Nature Reviews Immunology 12, 239–252 (2012)CrossRefGoogle Scholar
  61. 61.
    van den Elzen, P., Garg, S., Leon, L., Brigl, M., Leadbetter, E.A., Gumperz, J.E., Dascher, C.C., Cheng, T.Y., Sacks, F.M., Illarionov, P.A., Besra, G.S., Kent, S.C., Moody, D.B., Brenner, M.B.: Apolipoprotein-mediated pathways of lipid antigen presentation. Nature 437, 906–910 (2005)CrossRefGoogle Scholar
  62. 62.
    Kovacs-Simon, A., Titball, R.W., Michell, S.L.: Lipoproteins of Bacterial Pathogens. Infection and Immunity 79, 548–561 (2011)CrossRefGoogle Scholar
  63. 63.
    Chen, H.W., Liu, S.J., Liu, H.H., Kwok, Y., Lin, C.L., Lin, L.H., Chen, M.Y., Tsai, J.P., Chang, L.S., Chiu, F.F., Lai, L.W., Lian, W.C., Yang, C.Y., Hsieh, S.Y., Chong, P., Leng, C.H.: A novel technology for the production of a heterologous lipoprotein immunogen in high yield has implications for the field of vaccine design. Vaccine 27, 1400–1409 (2009)CrossRefGoogle Scholar
  64. 64.
    Huang, C.Y., Chen, J.J.W., Shen, K.Y., Chang, L.S., Yeh, Y.C., Chen, I.H., Chong, P., Liu, S.J., Leng, C.H.: Recombinant Lipidated HPV E7 Induces a Th-1-Biased Immune Response and Protective Immunity against Cervical Cancer in a Mouse Model. PLoS One 7 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Rui Kuai
    • 1
    • 2
  • Lukasz J. Ochyl
    • 1
    • 2
  • Anna Schwendeman
    • 2
    • 3
  • James J. Moon
    • 1
    • 2
    • 4
  1. 1.Department of Pharmaceutical SciencesUniversity of MichiganAnn ArborUSA
  2. 2.Biointerfaces InstituteUniversity of MichiganAnn ArborUSA
  3. 3.Department of Medicinal ChemistryUniversity of MichiganAnn ArborUSA
  4. 4.Department of Biomedical EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations