Advertisement

Nanomaterials for Diagnostic Imaging of the Brain

  • Ellen Qin
  • Hyunjoon Kong
Chapter
Part of the Biosystems & Biorobotics book series (BIOSYSROB, volume 9)

Abstract

Various brain diseases including Alzheimer’s disease, stroke, and cancer are major causes of death worldwide. Due to the notion that early diagnosis significantly increases success in treatments, several non-invasive bioimaging modalities such as MRI, CT, and PET are increasingly used to locate pathologic sites in the brain. To further enhance the quality of diagnostic imaging, efforts are incrementally made to couple imaging contrasts of interests to macromolecules or nanoparticles designed to cross over the brain-blood barrier and to bind to pathologic tissue. This chapter will therefore review such important emerging technologies for diagnostic imaging of brain and some preclinical and clinical success, so we can ultimately assist efforts to take diagnosis quality to the next level.

keywords

Brain Bioimaging Nanoparticle Microfabrication Brain-blood barrier 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alzheimer’s Disease Facts and Figures 10(2) (2014)Google Scholar
  2. 2.
    Siegel, R., Ma, J., Zou, Z., Jemel, A.: Cancer statistics. CA-Cancer J. Clin. (2014)Google Scholar
  3. 3.
    Brenner, D., Elliston, C., Hall, E., Berdon, W.: Estimated Risks of Radiation - Induced Fatal Cancer from Pediatric CT. AJR. 176, 289–296 (2000)CrossRefGoogle Scholar
  4. 4.
    Wang, C., Cohan, R., Ellis, H., Adusumilli, S., Dunnick, N.: Frequency, Management, and Outcome of Extravasation of Nonionic Iodinated Contrast Medium in 69 657 Intravenous Injections 243(1), 80-87 (2007)Google Scholar
  5. 5.
    Hainfeld, J., Smilowitz, H., O’Connor, M., Dilmanian, F., Slatkin, D.: Gold nanoparticle imaging and radiotherapy of brain tumors in mice. Nanomedicine 8(10), 1601–1609 (2013)CrossRefGoogle Scholar
  6. 6.
    Silva, A., Lee, J., Aoki, I., Korestsky, A.: Manganese-enhanced magnetic resonance imaging (MEMRI): methodological and practical considerations. NMR Biomed. 17, 532–543 (2004)CrossRefGoogle Scholar
  7. 7.
    Husson, B., Rodesch, G., Lasjuanias, P., Tardieu, M., Sebire, G.: Magnetic resonance angiography in childhood arterial brain infarcts a comparative study with contrast angiography. Stroke. 33, 1280–1285 (2002)CrossRefGoogle Scholar
  8. 8.
    Lin, A., Ross, B., Harris, K., Wong, W.: Efficacy of Proton Magnetic Resonance Spectroscopy in Neurological Diagnosis and Neurotherapeutic Decision Making. NeuroRx. 2(2), 197–214 (2005)CrossRefGoogle Scholar
  9. 9.
    Binder, J., Frost, J., Hammeke, T., Cox, R., Rao, S., Prieto, T.: Human Brain Language Areas Identified by Functional Magnetic Resonance Imaging. J. Neurosci. 353-362 (1997)Google Scholar
  10. 10.
    Law, M., Yang, S., Babb, J., Knopp, E., Golfinos, J., Zagzag, D., et al.: Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. AJNR Am. J. Neuroradiol. 25(5), 746–755 (2004)Google Scholar
  11. 11.
    Herholz, K.: PET studies in dementia. Ann. Nucl. Med. 17(2), 79–89 (2003)CrossRefMATHGoogle Scholar
  12. 12.
    Brindle, K.: New approaches for imaging tumor responses to treatment. Nature 8 (2008)Google Scholar
  13. 13.
    Ricci, P., Karis, J., Heiserman, J., Fram, E., Bice, A., Drayer, B.: Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography? Am. J. Neuroradiol. 19, 407–413 (1998)Google Scholar
  14. 14.
    Chen, W.: Clinical Applications of PET in Brain Tumors. J. Nucl. Med. 48(9), 1468–1481 (2007)CrossRefGoogle Scholar
  15. 15.
    Chung, J., Kim, Y., Kim, S., Lee, Y., Paek, S., Yeo, J., et al.: Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo- or isometabolic on 18F-FDG PET. Eur. J. Nucl. Med. 29, 176–182 (2002)CrossRefGoogle Scholar
  16. 16.
    Becherer, A., Karanikas, G., Szabó, M., Zettinig, G., Asenbaum, S., Marosi, C., et al.: Brain tumour imaging with PET: a comparison between [18F]fluorodopa and [11C]methionine. Eur. J. Nucl. Med. Mol. Imaging 30(11), 1561–1567 (2003)CrossRefGoogle Scholar
  17. 17.
    Chen, W., Silverman, D.H.S., Delaloye, S., Czernin, J., Kamdar, N., Pope, W., et al.: 18F-FDOPA PET Imaging of Brain Tumors: Comparison Study with 18F-FDG PET and Evaluation of Diagnostic Accuracy. J. Nucl. Med. 47(6), 904–911 (2006)Google Scholar
  18. 18.
    Shields, A., Grierson, J., Dohmen, B., Machulla, H., Stayanoff, J., Lawhorn-Crews, J., et al.: Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat. Med. 4(11), 1334–1336 (1998)CrossRefGoogle Scholar
  19. 19.
    Been, L., Suurmeijer, A.J., Cobben, D., Jager, P., Hoekstra, H., Elsinga, P.: [18F]FLT-PET in oncology: current status and opportunities. Eur. J. Nucl. Med. Mol. Imaging 31(12), 1659–1672 (2004)CrossRefGoogle Scholar
  20. 20.
    Boothman, D., Davis, T., Sahijdak, W.: Enhanced expression of thymidine kinase in human cells following ionizing radiation. Int. J. Radiat. Oncol. Bio. Phys. 30(2), 391–398 (1994)CrossRefGoogle Scholar
  21. 21.
    Chen, W., Cloughesy, T., Kamdar, N., Satyamurthy, N., Bergsneider, M., Liau, L., et al.: Imaging Proliferation in Brain Tumors with 18F-FLT PET: Comparison with 18F-FDG. J. Nucl. Med. 46, 945–952 (2005)Google Scholar
  22. 22.
    Mathis, C., Bacskai, B., Kajdasz, S., McLellan, M., Frosch, M., Hyman, B., et al.: A lipophilic thioflavin-T derivative for positron emission tomography (PET) imaging of amyloid in brain. Bioorg. Med. Chem. Lett. 12(3), 295–298 (2002)CrossRefGoogle Scholar
  23. 23.
    Klunk, W., Engler, H., Nordberg, A., Wang, Y., Blomqvist, G., Holt, P., et al.: Imaging Brain Amyloid in Alzheimer’s Disease with Pittsburgh Compound-B. Ann. Neurol. 55, 306–319 (2004)CrossRefGoogle Scholar
  24. 24.
    Bhojani, M.S., Van Dort, M., Rehemtulla, A., Ross, B.D.: Targeted Imaging and Therapy of Brain Cancer Using Theranostic Nanoparticles. Mol. Pharmaceutics 7(6), 1921–1929 (2010)CrossRefGoogle Scholar
  25. 25.
    Saito, R., Krauze, M., Bringas, J., Noble, C., McKnight, T., Jackson, P., et al.: Gadolinium-loaded liposomes allow for real-time magnetic resonance imaging of convection-enhanced delivery in the primate brain. Exp. Neurol. 196, 381–389 (2005)CrossRefGoogle Scholar
  26. 26.
    Ludermann, L., Hamm, B., Zimmer, C.: Pharmacokinetic analysis of glioma compartments with dynamic Gd-DTPA-enhanced magnetic resonance imaging. Magn. Reson. Imaging 18(10), 1201–1214 (2000)CrossRefGoogle Scholar
  27. 27.
    Gupta, A., Gupta, M.: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18), 3995–4021 (2005)CrossRefGoogle Scholar
  28. 28.
    Lacor, P., Buniel, M., Chang, L., Fernandez, S., Gong, Y., Viola, K., et al.: Synaptic targeting by Alzheimer’s-related amyloid beta oligomers. J. Neurosci. 45, 10191–10200 (2004)CrossRefGoogle Scholar
  29. 29.
    Viola, K., Sbarboro, J., Sureka, R., De, M., Bicca, M., Wang, J., et al.: Towards non-invasive diagnostic imaging of early-stage Alzheimer’s disease. Nat. Nanotechnol. 10, 91–98 (2015)CrossRefGoogle Scholar
  30. 30.
    Liu, H., Hua, M., Yang, H., Huang, C., Chu, P., Wu, J., et al.: Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery. PNAS. 107(34), 15205–15210 (2010)CrossRefGoogle Scholar
  31. 31.
    Cheng, Y., Dai, Q., Morshed, R., Fan, X., Wegscheid, M., Wainwright, D., et al.: Blood-brain barrier permeable gold nanoparticles: An efficient delivery platform for enhanced malignant glioma therapy and imaging. Small. 10(24), 5137–5150 (2014)Google Scholar
  32. 32.
    Reddy, G., Bhojani, M., McConville, P., Moody, J., Moffat, B., Hall, D., et al.: Vascular Targeted Nanoparticles for Imaging and Treatment of Brain Tumors. Clin. Cancer. Res. 12(22), 6677–6686 (2006)CrossRefGoogle Scholar
  33. 33.
    Kircher, M., Mahmood, U., King, R., Weissleder, R., Josephson, L.: A Multimodal Nanoparticle for Preoperative Magnetic Resonance Imaging and Intraoperative Optical Brain Tumor Delineation. Cancer Res. 63, 8122–8125 (2003)Google Scholar
  34. 34.
    Veiseh, O., Sun, C., Gunn, J., Kohler, N., Gabikian, P., Lee, D., et al.: Optical and MRI Multifunctional Nanoprobe for Targeting Gliomas. Nano Lett. 5(6), 1003–1008 (2005)CrossRefGoogle Scholar
  35. 35.
    Trehin, R., Figueiredo, J., Pettet, M., Weissleder, R., Josephson, L., Mahmood, U.: Fluorescent Nanoparticle Uptake for Brain Tumor Visualization. Neoplasia. 8(4), 302–311 (2006)CrossRefGoogle Scholar
  36. 36.
    Kircher, M., de la Zerda, A., Jokerst, J., Zavaleta, C., Kempen, P., Mittra, E., et al.: A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Ramen nanoparticle. Nat. Med. 18(5), 829–834 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana-ChampaignChampaignUSA

Personalised recommendations