Robotic Systems for Minimally Invasive Diagnosis and Therapy

Chapter
Part of the Biosystems & Biorobotics book series (BIOSYSROB, volume 9)

Abstract

Minimally invasive surgery and interventional procedures have seen rapid advancement as one of leading trend in medical technology innovation for its distinguished clinical benefit for patient. Robotic systems and technologies have made remarkable contribution to the innovation enabling various innovative devices and procedures including robotic laparoscopic surgery assist system. While robotic systems to assist general surgery seem to become mature technology, robotic systems for interventional procedures and neurological surgery are newly emerging. The minimally invasive procedures have inherent limitations and constraints that make human operation difficult or less optimal. Various medical imaging modalities are utilized as visual sensor for the procedures and each has limitations such as radiation exposure, resolution and sensitivity, real-time imaging capability, electromagnetic interference and etc. Tiny and complex tissue structure through which devices for the minimally invasive procedures perform diagnostic or therapeutic operation is another major limiting condition in terms of dexterity or precision. Robotic systems that converge various electro-mechanical engineering and computer science technologies facilitate human physician overcoming these limitations and achieving better clinical outcome for patient. Computed tomography (CT) or ultrasound guided biopsy is one of long researched applications for robotic system utilization. Several robotic systems for cardiac intervention and neurological surgery are already available for clinical use. The clinical efficacy of the robotic technologies needs further study including large scale randomized clinical study and safety issue with the use of robotic system either in assist or automation manner also need more research. It seems increasingly clear that robotic system technologies will continuously provide answers to many of unmet clinical needs in minimally invasive diagnosis and therapy.

Keywords

Medical robot Minimally invasive Surgical robot Intervention Biopsy Ablation Percutaneous procedure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Saliba, W., Reddy, V.Y., Wazni, O., Cummings, J.E., Burkhardt, J.D., Haissaguerre, M., Kautzner, J., Peichl, P., Neuzil, P., Schibgilla, V., Noelker, G., Brachmann, J., Di Biase, L., Barrett, C., Jais, P., Natale, A.: Atrial fibrillation ablation using a robotic catheter remote control system: initial human experience and long-term follow-up results. J. Am. Coll. Cardiol. 51(25), 2407–2411 (2008)CrossRefGoogle Scholar
  2. 2.
    Steven, D., Servatius, H., Rostock, T., Hoffmann, B., Drewitz, I., Müllerleile, K., Sultan, A., Aydin, M.A., Meinertz, T., Willems, S.: Reduced fluoroscopy during atrial fibrillation ablation: benefits of robotic guided navigation. J. Cardiovasc. Electrophysiol. 21(1), 6–12 (2010)CrossRefGoogle Scholar
  3. 3.
    Dewire, J., Calkins, H.: State-of-the-art and emerging technologies for atrial fibrillation ablation. Nat. Rev. Cardiol. 7(3), 129–138 (2010)CrossRefGoogle Scholar
  4. 4.
    Walsh, C.J., Hanumara, N.C., Slocum, A.H., Shepard, J.A., Gupta, R.: A patient-mounted, telerobotic tool for ct-guided percutaneous interventions. Journal of Medical Devices 2(1), 011007–10 (2008)CrossRefGoogle Scholar
  5. 5.
    Piccin, O., Bayle, B., Maurin, B., de Mathelin, M.: Kinematic modeling of a 5-dof parallel mechanism for semi-spherical workspace. Mechanism and Machine Theory 44(8), 1485–1496 (2009)CrossRefMATHGoogle Scholar
  6. 6.
    Stoianovici, D., Cleary, K., Patriciu, A., Mazilu, D., Stanimir, A., Craciunoiu, N., Watson, V., Kavoussi, L.: Acubot: a robot for radiological interventions. IEEE Transactions on Robotics and Automation 19(5), 927–930 (2003)CrossRefGoogle Scholar
  7. 7.
    Bebek, O., Hwang, M.J., Cavusoglu, M.C.: Design of a parallel robot for needle-based interventions on small animals. IEEE/ASME Transactions on Mechatronics 18(1), 62–73 (2013)CrossRefGoogle Scholar
  8. 8.
    Kobayashi, Y., Hong, J., Hamano, R., Okada, K., Fujie, M.G., Hashizume, M.: Development of a needle insertion manipulator for central venous catheterization. The International Journal of Medical Robotics and Computer Assisted Surgery 8(1), 34–44 (2012)CrossRefGoogle Scholar
  9. 9.
    Moon, Y., Choi, H.J., Seo, J.B., Choi, J.: Design and kinematic analysis of a new end-effector for robotic needle insertion-type intervention system. International Journal of Advanced Robotic Systems 11(190), 1–12 (2014)CrossRefGoogle Scholar
  10. 10.
    Chung, J, Cha, H.J., Yi, B.J., Kim, W.K.: Implementation of a 4-dof parallel mechanism as a needle insertion device. In: IEEE International Conference on Robotics and Automation, Anchorage, USA, May 3-8, 2010Google Scholar
  11. 11.
    Neubach, Z., Shoham, M.: Ultrasound-Guided Robot for Flexible Needle Steering. IEEE Trans. on Biomed. 57(4), 799–805 (2010)CrossRefGoogle Scholar
  12. 12.
    Tang, L., Chen, Y., He, X.: Compliant needle modeling and steerable insertion simulation. Computer-Aided Design and Applications 5, 39–46 (2008)CrossRefGoogle Scholar
  13. 13.
    Okazawa, S., Ebrahimi, R., Chuang, J., Salcudean, S.E., Rohling, R.: Hand-held steering needle device. IEEE/ASME Transactions on Mechatronics 10(3), 285–296 (2005)CrossRefGoogle Scholar
  14. 14.
    Schueler, B.A.: Operator shielding: how and why. Techniques in Vascular and Interventional Radiology 13(3), 167–171 (2010)CrossRefGoogle Scholar
  15. 15.
    Melzer, A., Gutmann, B., Remmele, T., Wolf, R., Lukoscheck, A., Bock, M., Bardenheuer, H., Fischer, H.: Innomotion for percutaneous image-guided interventions. IEEE Engineering in Medicine and Biology Magazine 27(3), 66–73 (2008)CrossRefGoogle Scholar
  16. 16.
    Salcudean, S.E., Prananta, T.D., Morris, W.J., Spadinger, I.: A robotic needle guide for prostate brachytherapy. In: IEEE International Conference on Robotics and Automation (ICRA), Pasadena, USA, pp. 2975−2981, May 19-23 2008Google Scholar
  17. 17.
    Bassan, H.S., Patel, R.V., Moallem, M.: A novel manipulator for percutaneous needle insertion: Design and experimentation. IEEE/ASME Transactions on Mechatronics 14(6), 746–761 (2009)CrossRefGoogle Scholar
  18. 18.
    Loser, M.H., Navab, N.: A new robotic system for visually controlled percutaneous interventions under ct fluoroscopy. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI), Pittsburgh, USA, pp. 887−896, October 11-14 2000Google Scholar
  19. 19.
    Conradie, J.P.: Fluoroscopy based needle positioning system for percutaneous nephrolithotomy procedures. PhD Dissertation, Stellenbosch: Stellenbosch University (2008)Google Scholar
  20. 20.
    Chen, X.: Instrument guide for MRI-guided percutaneous interventions. PhD Dissertation, Cambridge: Massachusetts Institute of Technology (2010)Google Scholar
  21. 21.
    Lin, M.L., Yang, B.D., Wang, Y.H., Yang, C.L., Wang, J.L.: A miniature patient-mount navigation system for assisting needle placement in ct-guided intervention. The International Journal of Medical Robotics and Computer Assisted Surgery 7(4), 423–430 (2011)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Hungr, N., Fouard, C., Robert, A., Bricault, I., Cinquin, P.: interventional radiology robot for CT and MRI guided percutaneous interventions. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part I. LNCS, vol. 6891, pp. 137–144. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  23. 23.
    Najafi, F., Sepehri, N.: A robotic wrist for remote ultrasound imaging. Mechanism and Machine Theory 46(8), 1153–1170 (2011)CrossRefGoogle Scholar
  24. 24.
    Zoppi, M., Zlatanov, D., Gosselin, C.M.: Analytical kinematics models and special geometries of a class of 4-dof parallel mechanisms. IEEE Transactions on Robotics 21(6), 1046–1055 (2005)CrossRefGoogle Scholar
  25. 25.
    Lum, M., Rosen, J., Sinanan, M.N., Hannaford, B.: Optimization of a spherical mechanism for a minimally invasive surgical robot: theoretical and experimental approaches. IEEE Transactions on Biomedical Engineering 53(7), 1440–1445 (2006)CrossRefGoogle Scholar
  26. 26.
    Zhang, X., Lehman, A., Nelson, C.A., Farritor, S.M., Oleynikov, D.: Cooperative robotic assistant for laparoscopic surgery: Cobrasurge. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), St. Louis, USA, pp. 5540−5545, October 11-15 2009Google Scholar
  27. 27.
    Ayvali, E., Liang, C.P., Ho, M., Chen, Y., Desia, J.P.: Towards a discretely actuated steerable cannula for diagnostic and therapeutic procedures. International Journal of Robotics Research. 31(5), 588–603 (2012)CrossRefGoogle Scholar
  28. 28.
    Sears, P., Dupont, P.: A steerable needle technology using curved concentric tubes. In: Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems (2009)Google Scholar
  29. 29.
    Torabi, M., Hauser, K., Alterovitz, R., Duindam, V., Goldberg, K.: Guiding medical needles using single-point tissue manipulation. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 2705−2710 (2009)Google Scholar
  30. 30.
    Burkhardt, J.D., Natale, A.: New technologies in atrial fibrillation ablation. Circulation 120(15), 1533–1541 (2009)CrossRefGoogle Scholar
  31. 31.
    Bunch, T.J., Asirvatham, S.J., Friedman, P.A., Monahan, K.H., Munger, T.M., Rea, R.F., Sinak, L.J., Packer, D.L.: Outcomes after cardiac perforation during radiofrequency ablation of the atrium. J. Cardiovasc. Electrophysiol. 16(11), 1172–1179 (2005)CrossRefGoogle Scholar
  32. 32.
    Fu, Y., Liu, H., Huang, W., Wang, S., Liang, Z.: Steerable catheters in minimally invasive vascular surgery. Int. J. Med. Robotics. Comput. Assist. Surg. 5, 381–391 (2009)CrossRefGoogle Scholar
  33. 33.
    Chun, K.R., Schmidt, B., Köktürk, B., Tilz, R., Fürnkranz, A., Konstantinidou, M., Wissner, E., Metzner, A., Ouyang, F., Kuck, K.H.: Catheter ablation - new developments in robotics. Herz Kardiovaskuläre Erkrankungen 33(8), 586–589 (2008)CrossRefGoogle Scholar
  34. 34.
    Ernst, S.: Robotic approach to catheter ablation. Curr. Opin. Cardiol. 23, 28–31 (2008)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Sensei robotic catheter system [updated 28 March 2011; cited 12 May 2011]. http://en.wikipedia.org/wiki/Sensei_robotic_catheter_system
  36. 36.
    Reddy, V.Y., Neuzil, P., Malchano, Z.J., Vijaykumar, R., Cury, R., Abbara, S., Weichet, J., McPherson, C.D., Ruskin, J.N.: View-synchronized robotic image-guided therapy for atrial fibrillation ablation: experimental validation and clinical feasibility. Circulation 115(21), 2705–2714 (2007)CrossRefGoogle Scholar
  37. 37.
    Rosenberg, L.B.: Virtual fixtures: Perceptual tools for telerobotic manipulation. In: Proceedings of the IEEE Virtual Reality Annual International Symposium, pp. 76−82 (1993)Google Scholar
  38. 38.
    Abbott, J.J., Marayong, P., Okamura, A.M.: Haptic virtual fixtures for robot-assisted manipulation. Springer Tracts in Advanced Robotics 28, 49–64 (2007)CrossRefGoogle Scholar
  39. 39.
    Li, M., Ishii, M., Taylor, R.H.: Spatial motion constraints using virtual fixtures generated by anatomy. IEEE T. Robot. 23(1), 4–19 (2007)CrossRefGoogle Scholar
  40. 40.
    Li, M., Okamura, A.M.: Recognition of operator motions for real-time assistance using virtual fixtures. In: Proceedings of the 11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 125−31(2003)Google Scholar
  41. 41.
    Bettini, A., Marayong, P., Lang, S., Okamura, A.M., Hager, G.D.: Vision-assisted control for manipulation using virtual fixtures. IEEE T. Robot. 20(6), 953–966 (2004)CrossRefGoogle Scholar
  42. 42.
    Hungr, N., Fouard, C., Robert, A., Bricault, I, Cinquin, P.: Interventional Radiology Robot for CT and MRI Guided Percutaneous Interventions. In: Medical Image Computing and Computer-Assisted Intervention, Toronto, Canada (2011)Google Scholar
  43. 43.
    Reed, K.B., Kallem, V., Alterovitz, R., Goldberg, K., Okamura, A.M., Cowan, N.J.: Integrated Planning and Image-Guided Control for Planar Needle Steering. In: Proceedings of the IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 819−824 (2008). doi: 10.1109/BIOROB.2008.4762833
  44. 44.
    Cleary, K., Watson, V., Lindisch, D., Taylor, R.H., Fichtinger, G., Xu, S., White, C.S., Donlon, J., Taylor, M., Patriciu, A., Mazilu, D., Stoianovici, D.: Precision placement of instruments for minimally invasive procedures using a “needle driver” robot. Int. J. Med. Robot. 1(2), 40–47 (2005)CrossRefGoogle Scholar
  45. 45.
    Marcelli, E., Cercenelli, L., Plicchi, G.: A Novel Telerobotic System to Remotely Navigate Standard Electrophysiology Catheters. Computers in Cardiology 35, 137–140 (2008)Google Scholar
  46. 46.
    Kronreif, G., Fürst, M., Ptacek, W., Kornfeld, M., Kettenbach, J.: Robotic system for image guided Therapie - B-Rob II. In: RAAD Workshop, BFD-022 (2006)Google Scholar
  47. 47.
    Maurin, B., Bayle, B., Piccin, O., Gangloff, J., de Mathelin, M., Doignon, C., Zanne, P., Gangi, A.: A Patient-Mounted Robotic Platform for CT-Scan Guided Procedures. IEEE Transactions on Biomedical Engineering 55(10), 2417–2425 (2008)CrossRefGoogle Scholar
  48. 48.
    Kaber, D.B., Endsley, M.R.: The effects of level of automation and adaptive automation on human performance, situation awareness and workload in a dynamic control task. Theor. Issues in Ergon. Sci. 5(2), 113–153 (2004)CrossRefGoogle Scholar
  49. 49.
    Fischer, G.S., Krieger, A., Iordachita, I.I., Csoma, C., Whitcomb, L.L., Fichtinger, G.: MRI compatibility of robot actuation techniques – A comparative study. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 509–517. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  50. 50.
    Zemiti, N., Bricault, I., Fouard, C., Sanchez, B., Cinquin, P.: A CT and MR compatible puncture robot to enhance accuracy and safety of image-guided interventions. IEEE/ASME Transactions on Mechatronics 13(3), 306–315 (2008)CrossRefGoogle Scholar
  51. 51.
    Taillant, E., Avila-Vilchis, J.-C., Allegrini, C., Bricault, I., Cinquin, P.: CT and MR compatible light puncture robot: architectural design and first experiments. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 145–152. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  52. 52.
    Moon, Y., Choi, J.: Development of a robotic mechanism for teleoperation-based needle interventions. In: 44th International Symposium on Robotics, pp. 1−3, October 2013Google Scholar
  53. 53.
    Krieger, A., Susil, R.C., Menard, C., Coleman, J.A., Fichtinger, G., Atalar, E., Whitcomb, L.L.: Design of a novel MRI compatible manipulator for image guided prostate interventions. IEEE Transactions on Biomedical Engineering 52(2), 306–313 (2005)CrossRefGoogle Scholar
  54. 54.
    Krieger, A., Iordachita, I., Guion, P., Singh, A.K., Kaushal, A., Menard, C., Pinto, P.A., Camphausen, K., Fichtinger, G., Whitcomb, L.L.: An MRI-compatible robotic system with hybrid tracking for MRI-guided prostate intervention. IEEE Transactions on Biomedical Engineering 58(11), 3049–3060 (2011)CrossRefGoogle Scholar
  55. 55.
    Taillant, E., Avila-Vilchis, J.-C., Allegrini, C., Bricault, I., Cinquin, P.: CT and MR Compatible Light Puncture Robot: Architectural Design and First Experiments. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 145–152. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  56. 56.
    Fischer, G., Iordachita, I., DiMaio, S.P., Fichtinger, G.: Design of a robot for transperineal prostate needle placement in MRI scanner. In: IEEE International Conference on Mechatronics, pp. 592−597 (2006)Google Scholar
  57. 57.
    Song, S.E., Cho, N.B., Fischer, G., Hata, N., Tempany, C., Fichtinger, G., Iordachita, I.: Development of a pneumatic robot for MRI-guided transperineal prostate biopsy and brachytherapy: New approaches. In: IEEE International Conference on Robotics and Automation, pp. 2580−2585 (2010)Google Scholar
  58. 58.
    Yakar, D., Schouten, M.G., Bosboom, D.G.H., Barentsz, J.O., Scheenen, T.W.J., Futterer, J.J.: Feasibility of a pneumatically actuated MR-compatible robot for transrectal prostate biopsy guidance. Radiology 260(1), 241–247 (2011)CrossRefGoogle Scholar
  59. 59.
    Muntener, M., Patriciu, A., Petrisor, D., Mazilu, D., Bagga, H., Kavoussi, L., Cleary, K., Stoianovici, D.: Magnetic resonance imaging compatible robotic system for fully automated brachytherapy seed placement. Urology 68, 1313–1317 (2006)CrossRefGoogle Scholar
  60. 60.
    Stoianovici D, Patriciu A, Petrisor D, Mazilu D, Kavoussi L, A new type of motor: Pneumatic step motor. IEEE/ASME Transactions on Mechatronics 12(1): 98−106Google Scholar
  61. 61.
    Stoianovici, D., Song, D., Petrisor, D., Ursu, D., Mazilu, D., Muntener, M., Schar, M., Patriciu, A.: “MRI Stealth” robot for prostate interventions. Minimally Invasive Therapy 16(4), 241–248 (2007)CrossRefGoogle Scholar
  62. 62.
    Zngos, S., Herzog, C., Eichler, K., Hammerstingl, R., Lukoschek, A., Guthmann, S., Gutmann, B., Schoepf, U.J., Costello, P., Vogl, T.J.: MR-compatible assistance system for punction in a high-field system: Device and feasibility of transgluteal biopsies of the prostate gland. Eur. Radiol. 17, 1118–1124 (2007)CrossRefGoogle Scholar
  63. 63.
    Goldenberg, A.A., Trachtenberg, J., Kucharczyk, W., Yi, Y., Haider, M., Ma, L., Weersink, R., Raoufi, C.: Robotic system for closed-bore MRI-guide prostatic interventions. IEEE/ASME Transactions on Mechatronics 13(3), 374–379 (2008)CrossRefGoogle Scholar
  64. 64.
    Elhawary, H., Zivanovic, A., Rea, M., Davies, B., Besant, C., McRobbie, D., de Souza, N., Young, I., Lampérth, M.: The feasibility of mr-image guided prostate biopsy using piezoceramic motors inside or near to the magnet isocentre. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 519–526. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  65. 65.
    Tokuda, J., Fischer, G.S., DiMaio, S.P., Gobbi, D.G., Csoma, C., Mewes, P.W., Fichtinger, G., Tempany, C.M., Hata, N.: Integrated navigation and control software system for MRI-guided robotic prostate interventions. Computerized Medical Imaging and Graphics 34, 3–8 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Asan Medical CenterSongpa-guSouth Korea

Personalised recommendations