Skip to main content

Nanoparticles for Pancreatic Islet Imaging

  • Chapter
  • First Online:
Biomedical Engineering: Frontier Research and Converging Technologies

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 9))

  • 2343 Accesses

Abstract

While clinical islet transplantation is being investigated as a useful method to cure diabetes mellitus (DM), the outcome of this therapy remains imperfect. This is mainly due to early graft rejection of transplanted islets by the instant blood-mediated inflammatory reaction (IBMIR) or islet ischemia. Therefore, it is important to develop imaging tools for transplanted islets, so that real-time treatment can be used to protect the islets from host immune reactions if required. Recently, synthetic nanoparticles are emerging in the area of biomedical imaging. Innovative nanoparticle developments have significantly enhanced the versatility of different imaging modalities. Nanoparticles represent potential probes to monitor transplanted islets through magnetic resonance imaging (MRI), positron emission tomography (PET), and optical imaging. Nanoparticles can be delivered to transplanted islets by conjugation onto the cell membrane, intracellular delivery, cellular membrane receptor or transporter targeting. Visualizing the survival, function, and biodistribution of transplanted islets may suggest an appropriate treatment, which will enhance islet graft survival. This chapter focuses on recent advances and applications of various nanoparticle-based imaging techniques used in molecular imaging to monitor transplanted islets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, D.K.: The practical importance of recognizing pancreatogenic or type 3c diabetes. Diabetes-Metab. Res. 28, 326–328 (2012)

    Article  Google Scholar 

  2. Ewald, N., Kaufmann, C., Raspe, A., Kloer, H.U., Bretzel, R.G., Hardt, P.D.: Prevalence of diabetes mellitus secondary to pancreatic diseases (type 3c). Diabetes-Metab. Res. 28, 338–342 (2012)

    Article  Google Scholar 

  3. Ricordi, C., Strom, T.B.: Clinical islet transplantation: Advances and immunological challenges. Nat. Rev. Immunol. 4, 258–268 (2004)

    Article  Google Scholar 

  4. Ryan, E.A., Paty, B.W., Senior, P.A., Bigam, D., Alfadhli, E., Kneteman, N.M., et al.: Five-year follow-up after clinical islet transplantation. Diabetes 54, 2060–2069 (2005)

    Article  Google Scholar 

  5. Sakata, N., Hayes, P., Tan, A., Chan, N.K., Mace, J., Peverini, R., et al.: MRI Assessment of Ischemic Liver After Intraportal Islet Transplantation. Transplantation 87, 825–830 (2009)

    Article  Google Scholar 

  6. Johansson, H., Lukinius, A., Moberg, L., Lundgren, T., Berne, C., Foss, A., et al.: Tissue factor produced by the endocrine cells of the islets of Langerhans is associated with a negative outcome of clinical islet transplantation. Diabetes 54, 1755–1762 (2005)

    Article  Google Scholar 

  7. Shapiro, A.M.J., Ricordi, C., Hering, B.J., Auchincloss, H., Lindblad, R., Robertson, P., et al.: International trial of the edmonton protocol for islet transplantation. New Engl. J. Med. 355, 1318–1330 (2006)

    Article  Google Scholar 

  8. Shapiro, A.M.J., Lakey, J.R.T., Ryan, E.A., Korbutt, G.S., Toth, E., Warnock, G.L., et al.: Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. New Engl. J. Med. 343, 230–238 (2000)

    Article  Google Scholar 

  9. Ayres, R.C.S., Dousset, B., Wixon, S., Buckels, J.A.C., Mcmaster, P., Mayer, A.D.: Peripheral Neurotoxicity with Tacrolimus. Lancet 343, 862–863 (1994)

    Article  Google Scholar 

  10. Berthoux, F.: European best practice guidelines for renal transplantation (Part 2) - Preface. Nephrol. Dial. Transpl. 17, 2 (2002)

    Google Scholar 

  11. Pascual, M., Theruvath, T., Kawai, T., Tolkoff-Rubin, N., Cosimi, A.B.: Medical progress - Strategies to improve long-term outcomes after renal transplantation. New Engl. J. Med. 346, 580–590 (2002)

    Article  Google Scholar 

  12. Radu, R.G., Fujimoto, S., Mukai, E., Takehiro, M., Shimono, D., Nabe, K., et al.: Tacrolimus suppresses glucose-induced insulin release from pancreatic islets by reducing glucokinase activity. Am. J. Physiol-Endoc. M. 288, E365–E371 (2005)

    Google Scholar 

  13. Desai, N.M., Goss, J.A., Deng, S.P., Wolf, B.A., Markmann, E., Palanjian, M., et al.: Elevated portal vein drug levels of sirolimus and tacrolimus in islet transplant recipients: Local immunosuppression or islet toxicity? Transplantation 76, 1623–1625 (2003)

    Article  Google Scholar 

  14. Shivaswamy, V., McClure, M., Passer, J., Frahm, C., Ochsner, L., Erickson, J., et al.: Hyperglycemia induced by tacrolimus and sirolimus is reversible in normal sprague-dawley rats. Endocrine 37, 489–496 (2010)

    Article  Google Scholar 

  15. Lu, Y.X., Dang, H., Middleton, B., Zhang, Z., Washburn, L., Campbell-Thompson, M., et al.: Bioluminescent monitoring of islet graft survival after transplantation. Mol. Ther. 9, 428–435 (2004)

    Article  Google Scholar 

  16. Chen, X.J., Zhang, X.M., Larson, C.S., Baker, M.S., Kaufman, D.B.: In vivo bioluminescence imaging of transplanted islets and early detection of graft rejection. Transplantation 81, 1421–1427 (2006)

    Article  Google Scholar 

  17. Virostko, J., Radhika, A., Poffenberger, G., Chen, Z.Y., Brissova, M., Gilchrist, J., et al.: Bioluminescence Imaging in Mouse Models Quantifies beta Cell Mass in the Pancreas and After Islet Transplantation. Mol. Imaging Biol. 12, 42–53 (2010)

    Article  Google Scholar 

  18. Massoud, T.F., Gambhir, S.S.: Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Gene Dev. 17, 545–580 (2003)

    Article  Google Scholar 

  19. Jirak, D., Kriz, J., Herynek, V., Andersson, B., Girman, P., Burian, M., et al.: MRI of transplanted pancreatic islets. Magnet Reson. Med. 52, 1228–1233 (2004)

    Article  Google Scholar 

  20. Toso, C., Zaidi, H., Morel, P., Armanet, M., Andres, A., Pernin, N., et al.: Positron-emission tomography imaging of early events after transplantation of islets of Langerhans. Transplantation 79, 353–355 (2005)

    Article  Google Scholar 

  21. Lu, Y.X., Dang, H., Middleton, B., Campbell-Thompson, M., Atkinson, M.A., Gambhir, S.S., et al.: Long-term monitoring of transplanted islets using positron emission tomography. Mol. Ther. 14, 851–856 (2006)

    Article  Google Scholar 

  22. Yang, B., Cai, H.L., Qin, W.J., Zhang, B., Zhai, C.X., Jiang, B., et al.: Bcl-2-functionalized ultrasmall superparamagnetic iron oxide nanoparticles coated with amphiphilic polymer enhance the labeling efficiency of islets for detection by magnetic resonance imaging. International Journal of Nanomedicine 8, 3977–3990 (2013)

    Google Scholar 

  23. Evgenov, N.V., Medarova, Z., Dai, G., Bonner-Weir, S., Moore, A.: In vivo imaging of islet transplantation. Nature Medicine 12, 144–148 (2006)

    Article  Google Scholar 

  24. Jiao, Y., Peng, Z.H., Zhang, J.Y., Qin, J., Zhong, C.P.: Liposome-Mediated Transfer Can Improve the Efficacy of Islet Labeling With Superparamagnetic Iron Oxide. Transpl P. 40, 3615–3618 (2008)

    Google Scholar 

  25. Juang, J.H., Wang, J.J., Shen, C.R., Kuo, C.H., Chien, Y.W., Kuo, H.Y., et al.: Magnetic Resonance Imaging of Transplanted Mouse Islets Labeled With Chitosan-Coated Superparamagnetic Iron Oxide Nanoparticles. Transpl. P. 42, 2104–2108 (2010)

    Google Scholar 

  26. Zhang, S.Z., He, H.J., Lu, W.W., Xu, Q.J., Zhou, B.J., Tang, X.D.: Tracking Intrahepatically Transplanted Islets Labeled With Feridex-Polyethyleneimine Complex Using a Clinical 3.0-T Magnetic Resonance Imaging Scanner. Pancreas 38, 293–302 (2009)

    Article  Google Scholar 

  27. Huber, D.L.: Synthesis, properties, and applications of iron nanoparticles. Small 1, 482–501 (2005)

    Article  Google Scholar 

  28. Ito, A., Shinkai, M., Honda, H., Kobayashi, T.: Medical application of functionalized magnetic nanoparticles. Journal of Bioscience and Bioengineering 100, 1–11 (2005)

    Article  Google Scholar 

  29. Elias, A., Tsourkas, A.: Imaging circulating cells and lymphoid tissues with iron oxide nanoparticles. Hematology / the Education Program of the American Society of Hematology American Society of Hematology Education Program, 720–726 (2009)

    Google Scholar 

  30. Chemically prepared magnetic nanoparticles. International Materials Reviews 49, 125–170 (2004)

    Google Scholar 

  31. Hwang, Y.H., Lee, D.Y.: Magnetic resonance imaging using heparin-coated superparamagnetic iron oxide nanoparticles for cell tracking in vivo. Quantitative Imaging in Medicine and Surgery 2, 118–123 (2012)

    Google Scholar 

  32. Sun, C., Lee, J.S., Zhang, M.: Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliv. Rev. 60, 1252–1265 (2008)

    Article  Google Scholar 

  33. McCarthy, J.R., Weissleder, R.: Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv. Drug Deliv. Rev. 60, 1241–1251 (2008)

    Article  Google Scholar 

  34. Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., et al.: Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical Reviews 108, 2064–2110 (2008)

    Article  Google Scholar 

  35. Wang, Y.X., Hussain, S.M., Krestin, G.P.: Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. European Radiology 11, 2319–2331 (2001)

    Article  Google Scholar 

  36. Bonnemain, B.: Superparamagnetic agents in magnetic resonance imaging: physicochemical characteristics and clinical applications. A Review, Journal of Drug Targeting 6, 167–174 (1998)

    Article  Google Scholar 

  37. Harisinghani, M.G., Barentsz, J., Hahn, P.F., Deserno, W.M., Tabatabaei, S., van de Kaa, C.H., et al.: Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. The New England Journal of Medicine 348, 2491–2499 (2003)

    Article  Google Scholar 

  38. Singh, A., Patel, T., Hertel, J., Bernardo, M., Kausz, A., Brenner, L.: Safety of ferumoxytol in patients with anemia and CKD. American Journal of Kidney Diseases: The Official Journal of the National Kidney Foundation 52, 907–915 (2008)

    Article  Google Scholar 

  39. Ris, F., Lepetit-Coiffe, M., Meda, P., Crowe, L.A., Toso, C., Armanet, M., et al.: Assessment of human islet labeling with clinical grade iron nanoparticles prior to transplantation for graft monitoring by MRI. Cell Transplantation 19, 1573–1585 (2010)

    Article  Google Scholar 

  40. Veranth, J.M., Kaser, E.G., Veranth, M.M., Koch, M., Yost, G.S.: Cytokine responses of human lung cells (BEAS-2B) treated with micron-sized and nanoparticles of metal oxides compared to soil dusts. Particle and Fibre Toxicology 4, 2 (2007)

    Article  Google Scholar 

  41. Hafeli, U.O., Riffle, J.S., Harris-Shekhawat, L., Carmichael-Baranauskas, A., Mark, F., Dailey, J.P., et al.: Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Molecular Pharmaceutics 6, 1417–1428 (2009)

    Article  Google Scholar 

  42. Jeng, H.A., Swanson, J.: Toxicity of metal oxide nanoparticles in mammalian cells. Journal of Environmental Science and Health Part A, Toxic/Hazardous Substances & Environmental Engineering 41, 2699–2711 (2006)

    Article  Google Scholar 

  43. Hussain, S.M., Hess, K.L., Gearhart, J.M., Geiss, K.T., Schlager, J.J.: In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicology in Vitro: An International Journal Published in Association with BIBRA 19, 975–983 (2005)

    Article  Google Scholar 

  44. Frank, J.A., Miller, B.R., Arbab, A.S., Zywicke, H.A., Jordan, E.K., Lewis, B.K., et al.: Clinically applicable labeling of mammalian and stem cells by combining; Superparamagnetic iron oxides and transfection agents. Radiology 228, 480–487 (2003)

    Article  Google Scholar 

  45. Zhang, Z.L., van den Bos, E.J., Wielopolski, P.A., de Jong-Popijus, M., Duncker, D.J., Krestin, G.P.: High-resolution magnetic resonance imaging of iron-labeled myoblasts using a standard 1.5-T clinical scanner. Magn. Reson. Mater Phy. 17, 201–209 (2004)

    Google Scholar 

  46. Klepka, M.T., Nedelko, N., Greneche, J.M., Lawniczak-Jablonska, K., Demchenko, I.N., Slawska-Waniewska, A., et al.: Local atomic structure and magnetic ordering of iron in Fe-chitosan complexes. Biomacromolecules 9, 1586–1594 (2008)

    Article  Google Scholar 

  47. Laudenslager, M.J., Schiffman, J.D., Schauer, C.L.: Carboxymethyl Chitosan as a Matrix Material for Platinum, Gold, and Silver Nanoparticles. Biomacromolecules 9, 2682–2685 (2008)

    Article  Google Scholar 

  48. Zhang, J., Wang, Q., Wang, L., Wang, A.: Manipulated dispersion of carbon nanotubes with derivatives of chitosan. Carbon 45, 1917–1920 (2007)

    Article  Google Scholar 

  49. Yoksan, R., Akashi, M., Miyata, M., Chirachanchai, S.: Optimal gamma-ray dose and irradiation conditions for producing low-molecular-weight chitosan that retains its chemical structure. Radiat. Res. 161, 471–480 (2004)

    Article  Google Scholar 

  50. Tsai, Z.T., Wang, J.F., Kuo, H.Y., Shen, C.R., Wang, J.J., Yen, T.C.: In situ preparation of high relaxivity iron oxide nanoparticles by coating with chitosan: A potential MRI contrast agent useful for cell tracking. J. Magn. Magn. Mater. 322, 208–213 (2010)

    Article  Google Scholar 

  51. Kim, S.J., Nian, C.L., Widenmaier, S., McIntosh, C.H.S.: Glucose-dependent insulinotropic polypeptide-mediated up-regulation of beta-cell antiapoptotic Bcl-2 gene expression is coordinated by cyclic AMP (cAMP) response element binding protein (CREB) and cAMP-responsive CREB coactivator 2. Mol. Cell Biol. 28, 1644–1656 (2008)

    Article  Google Scholar 

  52. Iwahashi, H., Hanafusa, T., Eguchi, Y., Nakajima, H., Miyagawa, J., Itoh, N., et al.: Cytokine-induced apoptotic cell death in a mouse pancreatic beta-cell line: Inhibition by Bcl-2. Diabetologia 39, 530–536 (1996)

    Article  Google Scholar 

  53. Aguilar-Bryan, L., Clement, J.P., Gonzalez, G., Kunjilwar, K., Babenko, A., Bryan, J.: Toward understanding the assembly and structure of K-ATP channels. Physiol. Rev. 78, 227–245 (1998)

    Google Scholar 

  54. Proks, P., Reimann, F., Green, N., Gribble, F., Ashcroft, F.: Sulfonylurea stimulation of insulin secretion. Diabetes 51, S368–S376 (2002)

    Article  Google Scholar 

  55. Schwanstecher, M., Schwanstecher, C., Dickel, C., Chudziak, F., Moshiri, A., Panten, U.: Location of the Sulfonylurea Receptor at the Cytoplasmic Face of the Beta-Cell Membrane. Brit. J. Pharmacol. 113, 903–911 (1994)

    Article  Google Scholar 

  56. Schneider, S., Feilen, P.J., Schreckenberger, M., Schwanstecher, M., Schwanstecher, C., Buchholz, H.G., et al.: In vitro and in vivo evaluation of novel glibenclamide derivatives as imaging agents for the non-invasive assessment of the pancreatic islet cell mass in animals and humans. Exp. Clin. Endocr. Diab. 113, 388–395 (2005)

    Article  Google Scholar 

  57. Schneider, S., Ueberberg, S., Korobeynikov, A., Schechinger, W., Schwanstecher, C., Schwanstecher, M., et al.: Synthesis and evaluation of a glibenclamide glucose-conjugate: A potential new lead compound for substituted glibenclamide derivatives as islet imaging agents. Regul Peptides 139, 122–127 (2007)

    Article  Google Scholar 

  58. Schottelius, M., Wester, H.J., Reubi, J.C., Senekowitsch-Schmidtke, R., Schwaiger, M.: Improvement of pharmacokinetics of radioiodinated Tyr(3)-octreotide by conjugation with carbohydrates. Bioconjugate Chem. 13, 1021–1030 (2002)

    Article  Google Scholar 

  59. Zhang, Y.F., Chen, W.G.: Radiolabeled glucagon-like peptide-1 analogues: a new pancreatic beta-cell imaging agent. Nucl. Med. Commun. 33, 223–227 (2012)

    Article  Google Scholar 

  60. Holst, J.J., Deacon, C.F., Vilsboll, T., Krarup, T., Madsbad, S.: Glucagon-like peptide-1, glucose homeostasis and diabetes. Trends Mol. Med. 14, 161–168 (2008)

    Article  Google Scholar 

  61. Deacon, C.F., Johnsen, A.H., Holst, J.J.: Degradation of Glucagon-Like Peptide-1 by Human Plasma in-Vitro Yields an N-Terminally Truncated Peptide That Is a Major Endogenous Metabolite in-Vivo. J. Clin. Endocr. Metab. 80, 952–957 (1995)

    Google Scholar 

  62. Wu, Z.H., Liu, S.L., Nair, I., Omori, K., Scott, S., Todorov, I., et al.: Cu-64 Labeled Sarcophagine Exendin-4 for MicroPET Imaging of Glucagon like Peptide-I Receptor Expression. Theranostics 4, 770–777 (2014)

    Article  Google Scholar 

  63. Wu, Z.H., Liu, S.L., Hassink, M., Nair, I., Park, R., Li, L., et al.: Development and Evaluation of F-18-TTCO-Cys(40)-Exendin-4: A PET Probe for Imaging Transplanted Islets. J. Nucl. Med. 54, 244–251 (2013)

    Article  Google Scholar 

  64. Wu, Z., Todorov, I., Li, L., Bading, J.R., Li, Z.B., Nair, I., et al.: In Vivo Imaging of Transplanted Islets with Cu-64-DO3A-VS-Cys(40)-Exendin-4 by Targeting GLP-1 Receptor. Bioconjugate Chem. 22, 1587–1594 (2011)

    Article  Google Scholar 

  65. Brom, M., Woliner-van der Weg, W., Joosten, L., Frielink, C., Bouckenooghe, T., Rijken, P., et al.: Non-invasive quantification of the beta cell mass by SPECT with In-111-labelled exendin. Diabetologia 57, 950–959 (2014)

    Article  Google Scholar 

  66. Brom, M., Joosten, L., Oyen, W.J.G., Gotthardt, M., Boerman, O.C.: Radiolabelled GLP-1 analogues for in vivo targeting of insulinomas. Contrast Media Mol. 7, 160–166 (2012)

    Article  Google Scholar 

  67. Wang, Y., Lim, K., Normandin, M., Zhao, X.J., Cline, G.W., Ding, Y.S.: Synthesis and evaluation of [F-18]exendin (9-39) as a potential biomarker to measure pancreatic beta-cell mass. Nucl. Med. Biol. 39, 167–176 (2012)

    Article  Google Scholar 

  68. Zhang, B., Yang, B., Zhai, C.X., Jiang, B., Wu, Y.L.: The role of exendin-4-conjugated superparamagnetic iron oxide nanoparticles in beta-cell-targeted MRI. Biomaterials 34, 5843–5852 (2013)

    Article  Google Scholar 

  69. Brand, C., Abdel-Atti, D., Zhang, Y.C., Carlin, S., Clardy, S.M., Keliher, E.J., et al.: In Vivo Imaging of GLP-1R with a Targeted Bimodal PET/Fluorescence Imaging Agent. Bioconjugate Chem. 25, 1323–1330 (2014)

    Article  Google Scholar 

  70. Zanzonico, P.: Principles of Nuclear Medicine Imaging: Planar, SPECT, PET, Multi-modality, and Autoradiography Systems. Radiat. Res. 177, 349–364 (2012)

    Article  Google Scholar 

  71. Pittet, M.J., Weissleder, R.: Intravital Imaging. Cell 147, 983–991 (2011)

    Article  Google Scholar 

  72. Malaisse, W.J.: On the track to the beta-cell. Diabetologia 44, 393–406 (2001)

    Article  Google Scholar 

  73. Guillam, M.T., Hummler, E., Schaerer, E., Yeh, J.I., Birnbaum, M.J., Beermann, F., et al.: Early diabetes and abnormal postnatal pancreatic islet development in mice lacking Glut-2. Nature Genetics 17, 327–330 (1997)

    Article  Google Scholar 

  74. Srinivas, M., Heerschap, A., Ahrens, E.T., Figdor, C.G., de Vries, I.J.: (19)F MRI for quantitative in vivo cell tracking. Trends in Biotechnology 28, 363–370 (2010)

    Article  Google Scholar 

  75. Lanza, G.M., Yu, X., Winter, P.M., Abendschein, D.R., Karukstis, K.K., Scott, M.J., et al.: Targeted antiproliferative drug delivery to vascular smooth muscle cells with a magnetic resonance imaging nanoparticle contrast agent: implications for rational therapy of restenosis. Circulation 106, 2842–2877 (2002)

    Article  Google Scholar 

  76. Malaisse, W.J., Zhang, Y., Louchami, K., Sharma, S., Dresselaers, T., Himmelreich, U., et al.: (19)F-heptuloses as tools for the non-invasive imaging of GLUT2-expressing cells. Archives of Biochemistry and Biophysics 517, 138–143 (2012)

    Article  Google Scholar 

  77. Larsen, M.O., Rolin, B., Wilken, M., Carr, R.D., Gotfredsen, C.F.: Measurements of Insulin Secretory Capacity and Glucose Tolerance to Predict Pancreatic β-Cell Mass In Vivo in the Nicotinamide/Streptozotocin Göttingen Minipig, a Model of Moderate Insulin Deficiency and Diabetes. Diabetes 52, 118–123 (2003)

    Article  Google Scholar 

  78. Ran, C., Pantazopoulos, P., Medarova, Z., Moore, A.: Synthesis and testing of beta-cell-specific streptozotocin-derived near-infrared imaging probes. Angewandte Chemie (International ed in English) 46, 8998–9001 (2007)

    Article  Google Scholar 

  79. Wang, Z., Gleichmann, H.: GLUT2 in pancreatic islets: crucial target molecule in diabetes induced with multiple low doses of streptozotocin in mice. Diabetes 47, 50–56 (1998)

    Article  Google Scholar 

  80. Orc, L., Thorens, B., Ravazzola, M., Lodish, H.F.: Localization of the pancreatic beta cell glucose transporter to specific plasma membrane domains. Science 245, 295–297 (1989)

    Google Scholar 

  81. Duncan, R.H., Davies, G.S.: Alkylation of DNA bases by carcinogenic N-nitrosamine metabolites: A theoretical study. International Journal of Quantum Chemistry 35, 665–677 (1989)

    Article  Google Scholar 

  82. Weihe, E., Schafer, M.K., Erickson, J.D., Eiden, L.E.: Localization of vesicular monoamine transporter isoforms (VMAT1 and VMAT2) to endocrine cells and neurons in rat. Journal of Molecular neuroscience: MN 5, 149–164 (1994)

    Article  Google Scholar 

  83. Anlauf, M., Eissele, R., Schafer, M.K., Eiden, L.E., Arnold, R., Pauser, U., et al.: Expression of the two isoforms of the vesicular monoamine transporter (VMAT1 and VMAT2) in the endocrine pancreas and pancreatic endocrine tumors. The Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society 51, 1027–1040 (2003)

    Article  Google Scholar 

  84. Maffei, A., Liu, Z., Witkowski, P., Moschella, F., Del Pozzo, G., Liu, E., et al.: Identification of tissue-restricted transcripts in human islets. Endocrinology 145, 4513–4521 (2004)

    Article  Google Scholar 

  85. Erickson, J.D., Schafer, M.K., Bonner, T.I., Eiden, L.E., Weihe, E.: Distinct pharmacological properties and distribution in neurons and endocrine cells of two isoforms of the human vesicular monoamine transporter. Proceedings of the National Academy of Sciences of the United States of America 93, 5166–5171 (1996)

    Article  Google Scholar 

  86. Simpson, N.R., Souza, F., Witkowski, P., Maffei, A., Raffo, A., Herron, A., et al.: Visualizing pancreatic beta-cell mass with [11C]DTBZ. Nucl. Med. Biol. 33, 855–864 (2006)

    Article  Google Scholar 

  87. Goland, R., Freeby, M., Parsey, R., Saisho, Y., Kumar, D., Simpson, N., et al.: 11C-dihydrotetrabenazine PET of the pancreas in subjects with long-standing type 1 diabetes and in healthy controls. J. Nucl. Med. 50, 382–389 (2009)

    Article  Google Scholar 

  88. Kung, H.F., Lieberman, B.P., Zhuang, Z.P., Oya, S., Kung, M.P., Choi, S.R., et al.: In vivo imaging of vesicular monoamine transporter 2 in pancreas using an (18)F epoxide derivative of tetrabenazine. Nucl. Med. Biol. 35, 825–837 (2008)

    Article  Google Scholar 

  89. Oishi, K., Miyamoto, Y., Saito, H., Murase, K., Ono, K., Sawada, M., et al.: In vivo imaging of transplanted islets labeled with a novel cationic nanoparticle. PLoS One 8, e57046 (2013)

    Article  Google Scholar 

  90. Toso, C., Valle, J.P., Morel, P., Ris, F., Demuylder-Mischler, S., Lepetit-Coiffe, M., et al.: Clinical magnetic resonance imaging of pancreatic islet grafts after iron nanoparticle labeling. Am. J. Transplant. 8, 701–706 (2008)

    Article  Google Scholar 

  91. Jung, M.J., Lee, S.S., Hwang, Y.H., Jung, H.S., Hwang, J.W., Kim, M.J., et al.: MRI of transplanted surface-labeled pancreatic islets with heparinized superparamagnetic iron oxide nanoparticles. Biomaterials 32, 9391–9400 (2011)

    Article  Google Scholar 

  92. Kitamura, N., Nakai, R., Kohda, H., Furuta-Okamoto, K., Iwata, H.: Labeling of islet cells with iron oxide nanoparticles through DNA hybridization for highly sensitive detection by MRI. Bioorganic & Medicinal Chemistry 21, 7175–7181 (2013)

    Article  Google Scholar 

  93. Wang, Y., Blanco-Andujar, C., Zhi, Z.L., So, P.W., Thanh, N.T., Pickup, J.C.: Multilayered nanocoatings incorporating superparamagnetic nanoparticles for tracking of pancreatic islet transplants with magnetic resonance imaging. Chemical Communications 49, 7255–7257 (2013)

    Article  Google Scholar 

  94. Teramura, Y., Kaneda, Y., Iwata, H.: Islet-encapsulation in ultra-thin layer-by-layer membranes of poly(vinyl alcohol) anchored to poly(ethylene glycol)-lipids in the cell membrane. Biomaterials 28, 4818–4825 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Yun Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kim, M.J., Hwang, Y.H., Lee, D.Y. (2016). Nanoparticles for Pancreatic Islet Imaging. In: Jo, H., Jun, HW., Shin, J., Lee, S. (eds) Biomedical Engineering: Frontier Research and Converging Technologies. Biosystems & Biorobotics, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-21813-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21813-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21812-0

  • Online ISBN: 978-3-319-21813-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics