Pacing the Heart with Genes: Biological Pacing as an Alternative to Electronic Devices

Chapter
Part of the Biosystems & Biorobotics book series (BIOSYSROB, volume 9)

Abstract

The mammalian heart beats spontaneously without conscious input from the brain. Each heartbeat starts from a minuscule region, called the sinoatrial node (SA node or SAN). The SA node is a small highly-specialized structure containing just a few thousand genuine pacemaker cells. In contrast, the vast majority of the myocardium is populated by the ~5 billion working cardiomyocytes which remain quiescent until the electrical signal propagated from the SAN stimulates them. When the SAN fails, it could lead to circulatory collapse, requiring implantation of electronic pacemaker devices. These electronic devices generally work quite well. However, problems such as lead failure/repositioning, pediatric patients outgrowing the device, finite battery life, and infection call for biologics that are free from all hardware. Toward this goal, we and others have tested the concept of biological pacing. This article focuses on recent breakthroughs in the engineering of biological pacemakers. Combined with efforts to create clinically-relevant, large animal models of biological pacing, the field is moving beyond a conceptual novelty toward a future with clinical reality.

Keywords

Bradycardia Gene therapy Biological pacemakers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernstein, A.D., Parsonnet, V.: Survey of cardiac pacing and implanted defibrillator practice patterns in the United States in 1997. Pacing Clin. Electrophysiol. 24(5), 842–855 (2001)CrossRefGoogle Scholar
  2. 2.
    Ionta, V., Liang, W., Kim, E.H., Rafie, R., Giacomello, A., Marban, E., et al.: SHOX2 overexpression favors differentiation of embryonic stem cells into cardiac pacemaker cells, improving biological pacing ability. Stem Cell Reports 4(1), 129–142 (2015). doi: 10.1016/j.stemcr.2014.11.004 CrossRefGoogle Scholar
  3. 3.
    Kehat, I., Khimovich, L., Caspi, O., Gepstein, A., Shofti, R., Arbel, G., et al.: Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat. Biotechnol. 22(10), 1282–1289 (2004). doi: 10.1038/nbt1014 CrossRefGoogle Scholar
  4. 4.
    Xue, T., Cho, H.C., Akar, F.G., Tsang, S.Y., Jones, S.P., Marbán, E., et al.: Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Circulation 111(1), 11–20 (2005). doi:01.CIR.0000151313.18547.A2. [pii]CrossRefGoogle Scholar
  5. 5.
    Miake, J., Marban, E., Nuss, H.B.: Biological pacemaker created by gene transfer. Nature 419(6903), 132–133 (2002)CrossRefGoogle Scholar
  6. 6.
    Cho, H.C., Backx, P.H.: Three-dimensional structure of a K+ channel pore: basis for ion selectivity and permeability. In: Steven, L., Archer, N.J.R. (eds.) Potassium Channels in Cardiovascular Biology, pp. 17–34. Kluwer Academic / Plenum Publishers, New York (2001)CrossRefGoogle Scholar
  7. 7.
    Zobel, C., Cho, H.C., Nguyen, T.T., Pekhletski, R., Diaz, R.J., Wilson, G.J., et al.: Molecular dissection of the inward rectifier potassium current (IK1) in rabbit cardiomyocytes: evidence for heteromeric co-assembly of Kir2.1 and Kir2.2. J. Physiol. 550(Pt 2), 365–372 (2003)CrossRefGoogle Scholar
  8. 8.
    Cho, H.C., Tsushima, R.G., Nguyen, T.T., Guy, H.R., Backx, P.H.: Two critical cysteine residues implicated in disulfide bond formation and proper folding of Kir2.1. Biochemistry 39(16), 4649–4657 (2000)CrossRefGoogle Scholar
  9. 9.
    Mangoni, M.E., Nargeot, J.: Genesis and regulation of the heart automaticity. Physiological Reviews 88(3), 919–982 (2008). doi: 10.1152/physrev.00018.2007 CrossRefGoogle Scholar
  10. 10.
    Cho, H.C., Marbán, E.: Biological therapies for cardiac arrhythmias: can genes and cells replace drugs and devices? Circ. Res. 106(4), 674–685 (2010). doi: 10.1161/CIRCRESAHA.109.212936 CrossRefGoogle Scholar
  11. 11.
    Lakatta, E.G., Vinogradova, T., Lyashkov, A., Sirenko, S., Zhu, W., Ruknudin, A., et al.: The integration of spontaneous intracellular Ca2+ cycling and surface membrane ion channel activation entrains normal automaticity in cells of the heart’s pacemaker. Ann. N. Y. Acad. Sci. 1080, 178–206 (2006)CrossRefGoogle Scholar
  12. 12.
    Miake, J., Marban, E., Nuss, H.B.: Functional role of inward rectifier current in heart probed by Kir2.1 overexpression and dominant-negative suppression. The Journal of Clinical Investigation 111(10), 1529–1536 (2003). doi: 10.1172/JCI17959 CrossRefGoogle Scholar
  13. 13.
    Rohr, S., Kucera, J.P., Fast, V.G., Kleber, A.G.: Paradoxical improvement of impulse conduction in cardiac tissue by partial cellular uncoupling. Science 275(5301), 841–844 (1997)CrossRefGoogle Scholar
  14. 14.
    Unudurthi, S.D., Wolf, R.M., Hund, T.J.: Role of sinoatrial node architecture in maintaining a balanced source-sink relationship and synchronous cardiac pacemaking. Frontiers in Physiology 5, 446 (2014). doi: 10.3389/fphys.2014.00446 CrossRefGoogle Scholar
  15. 15.
    Lakatta, E.G., DiFrancesco, D.: What keeps us ticking: a funny current, a calcium clock, or both? J. Mol. Cell. Cardiol. 47(2), 157–170 (2009)CrossRefGoogle Scholar
  16. 16.
    Chien, K.R., Domian, I.J., Parker, K.K.: Cardiogenesis and the complex biology of regenerative cardiovascular medicine. Science 322(5907), 1494–1497 (2008). doi: 10.1126/science.1163267 CrossRefGoogle Scholar
  17. 17.
    Bleeker, W.K., Mackaay, A.J., Masson-Pevet, M., Bouman, L.N., Becker, A.E.: Functional and morphological organization of the rabbit sinus node. Circ. Res. 46(1), 11–22 (1980)CrossRefGoogle Scholar
  18. 18.
    Christoffels, V.M., Smits, G.J., Kispert, A., Moorman, A.F.: Development of the pacemaker tissues of the heart. Circ. Res. 106(2), 240–254 (2010). doi:106/2/240. [pii]CrossRefGoogle Scholar
  19. 19.
    Blaschke, R.J., Hahurij, N.D., Kuijper, S., Just, S., Wisse, L.J., Deissler, K., et al.: Targeted mutation reveals essential functions of the homeodomain transcription factor Shox2 in sinoatrial and pacemaking development. Circulation 115(14), 1830–1838 (2007). doi: 10.1161/CIRCULATIONAHA.106.637819 CrossRefGoogle Scholar
  20. 20.
    Espinoza-Lewis, R.A., Yu, L., He, F., Liu, H., Tang, R., Shi, J., et al.: Shox2 is essential for the differentiation of cardiac pacemaker cells by repressing Nk2–5. Dev. Biol. 327(2), 376–385 (2009). doi:S0012-1606(08)01450-4. [pii]CrossRefGoogle Scholar
  21. 21.
    Hoogaars, W.M., Engel, A., Brons, J.F., Verkerk, A.O., de Lange, F.J., Wong, L.Y., et al.: Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria. Genes & Development 21(9), 1098–1112 (2007)CrossRefGoogle Scholar
  22. 22.
    Mori, A.D., Zhu, Y., Vahora, I., Nieman, B., Koshiba-Takeuchi, K., Davidson, L., et al.: Tbx5-dependent rheostatic control of cardiac gene expression and morphogenesis. Dev. Biol. 297(2), 566–586 (2006). doi: 10.1016/j.ydbio.2006.05.023 CrossRefGoogle Scholar
  23. 23.
    Wiese, C., Grieskamp, T., Airik, R., Mommersteeg, M.T., Gardiwal, A., de Gier-de, Vries C., et al.: Formation of the sinus node head and differentiation of sinus node myocardium are independently regulated by Tbx18 and Tbx3. Circ. Res. 104(3), 388–397 (2009)CrossRefGoogle Scholar
  24. 24.
    Kapoor, N., Liang, W., Marban, E., Cho, H.C.: Direct conversion of quiescent cardiomyocytes to pacemaker cells by expression of Tbx18. Nature Biotechnology 31(1), 54–62 (2013). doi: 10.1038/nbt.2465 CrossRefGoogle Scholar
  25. 25.
    Kapoor, N., Galang, G., Marbán, E., Cho, H.C.: Transcriptional suppression of Connexin43 by Tbx18 undermines cell-cell electrical coupling in postnatal cardiomyocytes. J. Biol. Chem. (2011). doi:M110.185298 [pii]
  26. 26.
    Lakatta, E.G., Maltsev, V.A., Vinogradova, T.M.: A coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart’s pacemaker. Circ. Res. 106(4), 659–673 (2010). doi:106/4/659. [pii]CrossRefGoogle Scholar
  27. 27.
    Cho, H.C., Kashiwakura, Y., Marbán, E.: Creation of a biological pacemaker by cell fusion. Circ. Res. 100(8), 1112–1115 (2007). doi:01.RES.0000265845.04439.78. [pii]CrossRefGoogle Scholar
  28. 28.
    Kashiwakura, Y., Cho, H.C., Barth, A.S., Azene, E., Marbán, E.: Gene transfer of a synthetic pacemaker channel into the heart: a novel strategy for biological pacing. Circulation 114(16), 1682–1686 (2006). doi:CIRCULATIONAHA.106.634865. [pii]CrossRefGoogle Scholar
  29. 29.
    Takahashi, K., Yamanaka, S.: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4), 663–676 (2006)CrossRefGoogle Scholar
  30. 30.
    Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., et al.: Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858), 1917–1920 (2007). doi:1151526. [pii]CrossRefGoogle Scholar
  31. 31.
    Bakker, M.L., Boink, G.J., Boukens, B.J., Verkerk, A.O., van den Boogaard, M., den Haan, A.D., et al.: T-box transcription factor TBX3 reprogrammes mature cardiac myocytes into pacemaker-like cells. Cardiovascular Research 94(3), 439–449 (2012). doi: 10.1093/cvr/cvs120 CrossRefGoogle Scholar
  32. 32.
    Chardack, W.M., Gage, A.A., Greatbatch, W.: A transistorized, self-contained, implantable pacemaker for the long-term correction of complete heart block. Surgery 48, 643–654 (1960)Google Scholar
  33. 33.
    Epstein, A.E., DiMarco, J.P., Ellenbogen, K.A., Estes 3rd, N.A., Freedman, R.A., Gettes, L.S., et al.: 2012 ACCF/AHA/HRS focused update incorporated into the ACCF/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. Circulation 127(3), e283–e352 (2013). doi: 10.1161/CIR.0b013e318276ce9b CrossRefGoogle Scholar
  34. 34.
    Bucchi, A., Plotnikov, A.N., Shlapakova, I., Danilo Jr, P., Kryukova, Y., Qu, J., et al.: Wild-type and mutant HCN channels in a tandem biological-electronic cardiac pacemaker. Circulation 114(10), 992–999 (2006)CrossRefGoogle Scholar
  35. 35.
    Cingolani, E., Yee, K., Shehata, M., Chugh, S.S., Marban, E., Cho, H.C.: Biological pacemaker created by percutaneous gene delivery via venous catheters in a porcine model of complete heart block. Heart Rhythm J. 9(8), 1310–1318 (2012). doi: 10.1016/j.hrthm.2012.04.020 CrossRefGoogle Scholar
  36. 36.
    Tse, H.F., Xue, T., Lau, C.P., Siu, C.W., Wang, K., Zhang, Q.Y., et al.: Bioartificial sinus node constructed via in vivo gene transfer of an engineered pacemaker HCN Channel reduces the dependence on electronic pacemaker in a sick-sinus syndrome model. Circulation 114(10), 1000–1011 (2006)CrossRefGoogle Scholar
  37. 37.
    Boink, G.J., Nearing, B.D., Shlapakova, I.N., Duan, L., Kryukova, Y., Bobkov, Y., et al.: Ca(2+)-stimulated adenylyl cyclase AC1 generates efficient biological pacing as single gene therapy and in combination with HCN2. Circulation 126(5), 528–536 (2012). doi: 10.1161/CIRCULATIONAHA.111.083584 CrossRefGoogle Scholar
  38. 38.
    Hu, Y.F., Dawkins, J.F., Cho, H.C., Marban, E., Cingolani, E.: Biological pacemaker created by minimally invasive somatic reprogramming in pigs with complete heart block. Sci. Transl. Med. 6(245), 245ra94 (2014). doi: 10.1126/scitranslmed.3008681
  39. 39.
    Cinca, J., Moya, A., Figueras, J., Roma, F., Rius, J.: Circadian variations in the electrical properties of the human heart assessed by sequential bedside electrophysiologic testing. American Heart Journal 112(2), 315–321 (1986)CrossRefGoogle Scholar
  40. 40.
    Narula, O.S., Samet, P., Javier, R.P.: Significance of the sinus-node recovery time. Circulation 45(1), 140–158 (1972)CrossRefGoogle Scholar
  41. 41.
    Montano, N., Ruscone, T.G., Porta, A., Lombardi, F., Pagani, M., Malliani, A.: Power spectrum analysis of heart rate variability to assess the changes in sympathovagal balance during graded orthostatic tilt. Circulation 90(4), 1826–1831 (1994)CrossRefGoogle Scholar
  42. 42.
    Nicolini, P., Ciulla, M.M., De Asmundis, C., Magrini, F., Brugada, P.: The prognostic value of heart rate variability in the elderly, changing the perspective: from sympathovagal balance to chaos theory. Pacing Clin. Electrophysiol. 35(5), 622–638 (2012). doi: 10.1111/j.1540-8159.2012.03335.x CrossRefGoogle Scholar
  43. 43.
    McGavigan, A.D., Roberts-Thomson, K.C., Hillock, R.J., Stevenson, I.H., Mond, H.G.: Right ventricular outflow tract pacing: radiographic and electrocardiographic correlates of lead position. Pacing Clin. Electrophysiol. 29(10), 1063–1068 (2006). doi: 10.1111/j.1540-8159.2006.00499.x CrossRefGoogle Scholar
  44. 44.
    Rajappan, K.: Permanent pacemaker implantation technique: part I: arrhythmias. Heart 95(3), 259–264 (2009). doi: 10.1136/hrt.2007.132753 CrossRefGoogle Scholar
  45. 45.
    Rosen, M.R., Robinson, R.B., Brink, P.R., Cohen, I.S.: The road to biological pacing. Nat. Rev. Cardiol. 8(11), 656–666 (2011). doi: 10.1038/nrcardio.2011.120 CrossRefGoogle Scholar
  46. 46.
    Kozhevnikov, D., Caref, E.B., El-Sherif, N.: Mechanisms of enhanced arrhythmogenicity of regional ischemia in the hypertrophied heart. Heart Rhythm 6(4), 522–527 (2009). doi: 10.1016/j.hrthm.2008.12.021 CrossRefGoogle Scholar
  47. 47.
    Antzelevitch, C., Oliva, A.: Amplification of spatial dispersion of repolarization underlies sudden cardiac death associated with catecholaminergic polymorphic VT, long QT, short QT and Brugada syndromes. Journal of Internal Medicine 259(1), 48–58 (2006). doi: 10.1111/j.1365-2796.2005.01587.x CrossRefGoogle Scholar
  48. 48.
    Losordo, D.W., Henry, T.D., Davidson, C., Sup Lee, J., Costa, M.A., Bass, T., et al.: Intramyocardial, autologous CD34+ cell therapy for refractory angina. Circ. Res. 109(4), 428–436 (2011). doi: 10.1161/CIRCRESAHA.111.245993 CrossRefGoogle Scholar
  49. 49.
    Perin, E.C., Dohmann, H.F., Borojevic, R., Silva, S.A., Sousa, A.L., Mesquita, C.T., et al.: Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 107(18), 2294–2302 (2003). doi: 10.1161/01.CIR.0000070596.30552.8B CrossRefGoogle Scholar
  50. 50.
    Perin, E.C., Dohmann, H.F., Borojevic, R., Silva, S.A., Sousa, A.L., Silva, G.V., et al.: Improved exercise capacity and ischemia 6 and 12 months after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy. Circulation 110(11 Suppl. 1), II213–II218 (2004). doi: 10.1161/01.CIR.0000138398.77550.62 Google Scholar
  51. 51.
    Mitani, K., Graham, F.L., Caskey, C.T., Kochanek, S.: Rescue, propagation, and partial purification of a helper virus-dependent adenovirus vector. Proceedings of the National Academy of Sciences of the United States of America 92(9), 3854–3858 (1995)CrossRefGoogle Scholar
  52. 52.
    Gray, S.J., Samulski, R.J.: Optimizing gene delivery vectors for the treatment of heart disease. Expert Opinion on Biological Therapy 8(7), 911–922 (2008)CrossRefGoogle Scholar
  53. 53.
    Reddy, V.Y., Knops, R.E., Sperzel, J., Miller, M.A., Petru, J., Simon, J., et al.: Permanent leadless cardiac pacing: results of the LEADLESS trial. Circulation 129(14), 1466–1471 (2014). doi: 10.1161/CIRCULATIONAHA.113.006987 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Urowsky-Sahr Scholar in Pediatric BioengineeringDepartment of Biomedical Engineering and Pediatrics Emory UniversityAtlantaUSA
  2. 2.Department of Cardiology, CHA Bundang Medical CenterCHA University SeongnamSeongnamRepublic of Korea

Personalised recommendations