Advertisement

Advanced Stents for Cardiovascular Applications

  • Mahmoud A. Elnaggar
  • Yoon Ki Joung
  • Dong Keun Han
Chapter
Part of the Biosystems & Biorobotics book series (BIOSYSROB, volume 9)

Abstract

Over the past decades, there has been significant evolution in coronary stents used in percutaneous coronary intervention. These coronary stents were developed to prevent the recoil and acute closure that limited the effectiveness of angioplasty. New problems of in-segment restenosis and stent thrombosis emerged despite the advantages of bare metal stents (BMS) for these issues. Antiplatelet therapy and better stent ballooning strategies decreased complications; however, restenosis remained a problem until the development of drug-eluting stents (DES). First generation sirolimus- and paclitaxel-eluting stents were very successful in lowering restenosis, but still other safety concerns emerged, in particular, higher rates of late stent thrombosis. This led to the continuous research and development of new types of DES, and the birth of fully biodegradable stent platforms, which is foreseen to truly overcome the obstacle of having a permanent polymer and metallic stent remaining in the vessel wall that may precipitate sustained inflammation, persistent vasomotor dysfunction, and in-stent neo-atherosclerosis. In this chapter, we will cover the wide spectrum of advancements in stent technologies, and the approaches that were undertaken to surmount the issues that arose with the use of the various devices in vivo, such as material, design, drugs etc., until the most recent ones, an overview of the biological background for the use of percutaneous coronary intervention, and the complications that appear through the use of the different generations of stents.

Keywords

Coronary stent Bare metal stent Drug-eluting stent Restenosis Late thrombosis Bioabsorbable stent Future generation stent 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bedair, T.M., Cho, Y.J., Park, B.J., Joung, Y.K., Han, D.K.: Coating defects in polymer-coated drug-eluting stents. Biomater. Biomed. Eng. 1(3), 121–141 (2014)Google Scholar
  2. 2.
    Finegold, J.A., Asaria, P., Francis, D.P.: Mortality from ischaemic heart disease by country, region, and age: Statistics from World Health Organisation and United Nations. Int. J. Card. 168(2), 934–945 (2012)CrossRefGoogle Scholar
  3. 3.
    Gruentzig, A.R., King III, S.B., Schlumpf, M., Siegenthaler, W.: Long-term follow-up after percutaneous transluminal coronary angioplasty: the early Zurich experience. N. Engl. J. Med. 316, 1127–1132 (1987)CrossRefGoogle Scholar
  4. 4.
    Holmes Jr, D.R., Vliestra, R.E., Smith, H.C., et al.: Restenosis after percutaneous transluminal coronary angioplasty (PTCA): a report from the PTCA Registry of the National Heart, lung, and blood Institute. Am. J. Cardiol. 53, 77–81 (1984)CrossRefGoogle Scholar
  5. 5.
    Fischman, D.L., Leon, M.B., Baim, D.S., et al.: A randomized comparison of coronary-stent placement and balloon angioplasty in treatment of coronary artery disease. Stent study investigators. N. Engl. J. Med. 331, 496–501 (1994)CrossRefGoogle Scholar
  6. 6.
    Serruys, P.W., De Jaegere, P., Kiemeneij, F., et al.: A comparison of Balloon-expandable-stent implantation with Balloon angioplasty in patients with coronary artery disease. Benestent Study Group. N. Engl. J. Med. 349, 1315–1323 (1994)Google Scholar
  7. 7.
    Tesfamarium, B.: Local vascular toxicokinetics of stent-based drug delivery. Toxicol. Lett. 168, 93–102 (2007)CrossRefGoogle Scholar
  8. 8.
    Kastrati, A., Mehilli, J., Dirschinger, J., Dotzer, F., Schuehlen, H., Neumann, F.J., et al.: Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO) trial. Circulation 103, 2816–2821 (2001)CrossRefGoogle Scholar
  9. 9.
    Briguori, C., Sarais, C., Pagnotta, P., Liistro, F., Montorfano, M., Chieffo, A., et al.: In-stent restenosis in small coronary arteries: impact of strut thickness. J. Am. Coll. Cardiol. 40, 403–409 (2002)CrossRefGoogle Scholar
  10. 10.
    Clerc, C.O., Jedwab, M.R., Mayer, D.W., Thompson, P.J., Stinson, J.S.: Assessment of wrought ASTM F1058 cobalt alloy properties for permanent surgical implants. J. Biomed. Mater. Res. Appl. Biomater. 38, 229–234 (1997)CrossRefGoogle Scholar
  11. 11.
    Kereiakes, D.J., Cox, D.A., Hermiller, J.B., Midei, M.G., Bachinsky, W.B., Nujta, E.D., et al.: Usefulness of a cobalt chromium coronary stent alloy. Am. J. Cardiol. 92, 463–466 (2003)CrossRefGoogle Scholar
  12. 12.
    Sketch, M.H., Ball, M., Rutherford, B., Pompa, J.J., Russell, C., Kereiakes, D.J.: Evaluation of the Medtronic (Driver) cobalt-chromium alloy coronary stent system. Am. J. Cardiol. 95, 8–12 (2005)CrossRefGoogle Scholar
  13. 13.
    Metikos-Hukovic, M., Pilic, Z., Babie, R., Omanovic, D.: Influence of alloying elements on the corrosion stability of CoCrMo implant alloy in Hank’s solution. Acta Biomater. 2, 693–700 (2006)CrossRefGoogle Scholar
  14. 14.
    Craig, C.H., Friend, C.M., Edwards, M.R., Cornish, L.A., Gokcen, N.A.: Mechanical Properties and microstructure of platinum enhanced radiopaque stainless steel (PERSS) alloys. J. Alloy. Comp. 361, 187–199 (2003)CrossRefGoogle Scholar
  15. 15.
    Azibad, A., Popma, J.J., Tanajura, L.F., Hattori, K., Solberg, B., Larracas, C., et al.: Clinical and angiographic results of percutaneous coronary revascularization using a trilayer stainless steel-tantalum-stainless steel phosphorylcholine-coated stent: The TriMaxx trial. Catherter Cardiovasc. Interv. 70, 914–919 (2007)CrossRefGoogle Scholar
  16. 16.
    Kastrati, A., Schoemig, A., Dirschinger, J., Mehilli, J., von Welser, N., Pache, J., et al.: Increased risk of restenosis after placement of gold-coated stents. Circulation 101, 2478–2483 (2000)CrossRefGoogle Scholar
  17. 17.
    Reifart, N., Morice, M.C., Silber, S., Benit, E., Hauptmann, K.E., de Sousa, E., et al.: The NUGGET study: NIR ultra gold-gilded equivalency trial. Catheter Cardiovasc. Interv. 62, 18–25 (2004)CrossRefGoogle Scholar
  18. 18.
    Gutensohn, K., Beythien, C., Bau, J., Fenner, T., Grewe, P., Koester, R., et al.: In vitro analysis of diamond-like carbon coated stents: reduction of metal ion release, platelet activation, and thrombogenecity. Thromb. Res. 99, 577–585 (2000)CrossRefGoogle Scholar
  19. 19.
    Airoldi, F., Colombo, A., Tavano, D., Stankovic, G., Klugmann, S., Paolillo, V., et al.: Comparison of Diamond-like carbon-coated stents versus uncoated stainless steel stents in coronary artery disease. Am. J. Cardiol. 93, 474–477 (2004)CrossRefGoogle Scholar
  20. 20.
    Meirles, G.C.X., de Abreu, L.M., da Cruz Forte, A.A., Sumita, M.K., Sumita, J.H., Aliaga, J.: Randomized comparative study of diamond-like carbon coated stainless steel stent versus uncoated stent implantation in patients with coronary artery disease. Arc. Bras. Cardiol. 88(4), 343–347 (2007)Google Scholar
  21. 21.
    Antoniucci, D., Valenti, R., Migliorini, A., Moschi, G., Trapani, M., Bolognese, L., et al.: Clinical and angiographic outcomes following elective implantation of the carbostent in patients at high risk of restenosis and target vessel failure. Catheter Cardiovasc. Interv. 54, 420–426 (2001)CrossRefGoogle Scholar
  22. 22.
    Kim, Y.H., Lee, C.W., Hong, M.K., Park, S.W., Tahk, S.J., Yang, J.Y., et al.: Randomized comparison of carbon ion-implanted stent versus bare metal stent in coronary artery disease: the asian pacific multicancer arthos stent study (PASS) trial. Am. Heart J. 149, 336–341 (2005)CrossRefGoogle Scholar
  23. 23.
    Rzany, A., Schaldach, M.: Smart material silicon carbide: reduced activation of cells and proteins on a-SiC:H-coated stainless steel. Prog. Biomed. Res. 3, 182–194 (2001)Google Scholar
  24. 24.
    Heublein, B., Pethig, K., Ozbek, C., Elsayed, M., Bolz, A., Schaldach, M.: Silicon carbide coating-a new hybrid design of coronary stents. Prog. Biomed. Res. 1, 33–39 (1998)Google Scholar
  25. 25.
    Vallence, P., Chan, N.: Endothelial fuction and nitric oxide: clinical relevance. Heart 85, 342–350 (2001)CrossRefGoogle Scholar
  26. 26.
    Windecker, S., Mayer, I., De Pasquale, G., Maier, W., Dirsch, O., De Groot, P., et al.: Stent coating with titanium-nitride-oxide for reduction of neointimal hyperplasia. Circulation 104, 928–933 (2001)CrossRefGoogle Scholar
  27. 27.
    Windecker, S., Simon, R., Lins, M., Klauss, V., Eberli, F.R., Roffi, M., et al.: Randomized comparison of a titanium-nitride-oxide-coated stent with a stainless steel stent for coronary revascularization The TiNOX Trial. Circulation 111, 2617–2622 (2005)CrossRefGoogle Scholar
  28. 28.
    Nikol, S., Huehns, T.Y., Hofling, B.: Molecular biology and post-angioplasty restenosis. Atherosclerosis 123, 17–31 (1996)CrossRefGoogle Scholar
  29. 29.
    Rajagopal, V., Rockson, S.G.: Coronary restenosis: a review of mechanisms and management. Am. J. Med. 115, 547–553 (2003)CrossRefGoogle Scholar
  30. 30.
    Farb, A., Weber, D.K., Kolodgie, F.D., Burke, A.P., Virmani, R.: Morphological predictors of restenosis after coronary stenting in humans. Circulation 105, 2974–2980 (2002)CrossRefGoogle Scholar
  31. 31.
    Morice, M.C., Serruys, P.W., Sousa, J.E., et al.: A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N. Engl. J. Med. 346(23), 1773–1780 (2002)CrossRefGoogle Scholar
  32. 32.
    Mark, S.O., Mark, A.R.: Bench to bedside: the development of rapamycin and its application to stent stenosis. Circulation 104, 853–858 (2001)Google Scholar
  33. 33.
    Burke, S.E., Lubbers, N.L., Chen, Y.W., et al.: Neointimal formation after balloon-induced vascular injury in yucaran minipigs is reduced by oral rapamycin. J. Cardiovasc. Pharmacol. 33, 829–835 (1999)CrossRefGoogle Scholar
  34. 34.
    Gallo, R., Padurean, A., Jayaraman, T., et al.: Inhibition of intimal thickening after balloon angioplasty in porcine coronary arteries by targeting regulators of the cell cycle. Circulation 99, 2164–2170 (1999)CrossRefGoogle Scholar
  35. 35.
    Fajadet, J., Morice, M.C., Bode, C., et al.: Maintenance of long-term clinical benefit with sirolimus-eluting coronary stents: three-year results of the RAVEL trial. Circulation 111, 1040–1044 (2005)CrossRefGoogle Scholar
  36. 36.
    Weisz, G., Leon, M.B., Holmes, D.R., et al.: Two-year outcomes after sirolimus-Eluting stent implantation: results from the sirolimus-Eluting in de Novo Native Coronary Lesions (SIRIUS) trial. J. Am. Coll. Cardiol. 47, 1350–1355 (2006)CrossRefGoogle Scholar
  37. 37.
    Schofer, J., Schluter, M., Gershlick, A.H., et al.: Sirolimus-eluting stents for treatment of patients with long atherosclerotic lesions in small coronary arteries: double-blinded, randomized controlled trial (E-SIRIUS). Lancet 362, 1093–1099 (2003)CrossRefGoogle Scholar
  38. 38.
    Schampaert, E., Cohen, E.A., Schluter, M., et al.: The Canadian study of the sirolimus-eluting stent in the treatment of patients with long de novo lesions in small native coronary arteries (C-SIRIUS). J. Am. Coll. Cardiol. 43, 1110–1115 (2004)CrossRefGoogle Scholar
  39. 39.
    Schampaert, E., Moses, J.W., Schofer, J., et al.: Sirolimus-eluting stents at two years: a pooled analysis of SIRIUS, E-SIRIUS, and C-SIRIUS with emphasis on late revascularization and stent thrombosis. Am. J. Cardiol. 98, 36–41 (2006)CrossRefGoogle Scholar
  40. 40.
    Sollott, S.J., Cheng, L., Pauly, R.R., et al.: Taxol inhibits neointimal smooth muscle cell accumulation after angioplasty in the rat. J. Clin. Invest. 95, 1869–1876 (1995)CrossRefGoogle Scholar
  41. 41.
    Grube, E., Silber, S., Hauptmann, K.E., et al.: TAXUS I: six- and twelve- month results from a randomized, double blind trial on a slow-release paclitaxel –eluting stent for de novo coronary artery lesions. Circulation 107, 38–42 (2003)CrossRefGoogle Scholar
  42. 42.
    Colombo, A., Drzewiecki, J., Banning, A., et al.: Randomized study to assess the effectiveness of slow- and moderate- release polymer-based paclitaxel-eluting stents for coronary artery lesions. Circulation 108, 788–794 (2003)CrossRefGoogle Scholar
  43. 43.
    Stone, G.W., Ellis, S.G., Cox, D.A., et al.: one-year clinical results with the slow-release, polymer-based, paclitaxel-eluting TAXUS stent: the TAXUS IV trial. Circulation 109, 1942–1947 (2004)CrossRefGoogle Scholar
  44. 44.
    Stone, G.W., Ellis, S.G., Cannon, L., et al.: Comparison of a polymer-based paclitaxel-eluting stent with a bare-metal stent in patients with complex coronary artery disease: a randomized control trial. JAMA 294, 1215–1223 (2005)CrossRefGoogle Scholar
  45. 45.
    Dawkins, K.D., Grube, E., Guagliumi, G., et al.: Clinical efficacy of polymer-based paclitaxel-eluting stents in the treatment of complex, long coronary artery lesions from a multicenter, randomized trial: support for the use of drug-eluting stents in contemporary clinical practice. Circulation 112, 3306–3313 (2005)CrossRefGoogle Scholar
  46. 46.
    Guagliumi, G., Farb, A., Musumeci, G., et al.: Images in cardiovascular medicine, Sirolimus-eluting stent implanted in human coronary artery for 16 months: pathological findings. Circulation 107(9), 1340–1341 (2003)CrossRefGoogle Scholar
  47. 47.
    Joner, M., Finn, A.V., Farb, A., et al.: Pathology of drug eluting stents in humans: delayed healing and late thrombotic risk. J. Am. Coll. Cardiol. 48(1), 193–202 (2006)CrossRefGoogle Scholar
  48. 48.
    Finn, A.V., Joner, M., Nakazawa, G., et al.: Pathological correlates of late drug-eluting stent thrombosis: strut coverage as a marker of endothelialization. Circulation 115(18), 2435–2441 (2007)CrossRefGoogle Scholar
  49. 49.
    Nakazawa, G., Finn, A.V., Joner, M., et al.: Delayed arterial healing and increased late stent thrombosis at culprit sites after drug-eluting stent placement for acute myocardial infarction patients: an autopsy study. Circulation 118(11), 1138–1145 (2008)CrossRefGoogle Scholar
  50. 50.
    Awata, M., Kotani, J., Uematsu, M., et al.: Serial angioscopic evidence of incomplete neointimal coverage after sirolimus-eluting stent implantation: comparison with bare-metal stents. Circulation 116(8), 910–916 (2007)CrossRefGoogle Scholar
  51. 51.
    Matsumoto, D., Shite, J., Shinke, T., et al.: Neointimal coverage of sirolimus-eluting stents at 6 month follow-up: evaluated by optical coherence tomography. Eur. Heart J. 28(8), 961–967 (2007)CrossRefGoogle Scholar
  52. 52.
    Kubo, T., Imanishi, T., Kitabata, H., et al.: Comparison of vascular response after sirolimus-eluting stent implantation between patients with unstable and stable angina pectoris a serial optical coherence tomography study. J. Am. Coll. Cardiol. Img. 1(4), 475–484 (2008)CrossRefGoogle Scholar
  53. 53.
    Virmani, R., Guagliumi, G., Farb, A., et al.: Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent: should we be cautious? Circulation 109(6), 701–705 (2004)CrossRefGoogle Scholar
  54. 54.
    Finn, A.V., Nakazawa, G., Joner, M., et al.: Vascular responses to drug-eluting stents: importance of delayed healing. Arterioscler. Thromb. Vasc. Biol. 27(7), 1500–1510 (2007)CrossRefGoogle Scholar
  55. 55.
    Ahmed, D.D., Sobczak, S.C., Yunginger, J.W.: Occupational allergies caused by latex. Immunol. Allergy Clin. North. Am. 23(2), 205–219 (2003)CrossRefGoogle Scholar
  56. 56.
    Leggat, P.A., Kedjarune, U.: U. Toxicity of methyl methacrylate in dentistry. Int. Dent. J. 53(3), 126–131 (2003)CrossRefGoogle Scholar
  57. 57.
    Farb, A., Heller, P.F., Shroff, S., et al.: Pathological analysis of local delivery of paclitaxel via a polymer-coated stent. Circulation 104(4), 473–479 (2001)CrossRefGoogle Scholar
  58. 58.
    Whelan, D.M., van der Giessen, W.J., Krabbendam, S.C., van Vliet, E.A., Verdouw, P.D., Serruys, P.W., van Beusekom, H.M.: Biocompatibility of phosphorylcholine coated stents in normal porcine coronary arteries. Heart 83, 338–345 (2000)CrossRefGoogle Scholar
  59. 59.
    Fajadet, J., Wijns, W., Laarman, G.J., et al.: Randomized, Double-Blind, Multicenter Study of the Endeavor Zotarolimus-Eluting Phosphorylcholine-Encapsulated Stent for Treatment of Native Coronary Artery Lesions: clinical and angiographic results of the ENDEAVOR II trial. Circulation 114, 798–806 (2006)CrossRefGoogle Scholar
  60. 60.
    Meredith, I.T., Ormiston, J., Whitbourn, R., et al.: Four-year clinical follow-up after implantation of the endeavor zotarolimus-eluting stent: ENDEAVOR I, the first-in-human study. Am. J. Cardiol. 100, 56–61 (2007)CrossRefGoogle Scholar
  61. 61.
    Kandzari, D.E., Leon, M.B., Popma, J.J., et al.: Comparison of zotarolimus-eluting and sirolimus-eluting stents in patients with native coronary artery disease: a randomized controlled trial. J. Am. Coll. Cardiol. 48(12), 2440–2447 (2006)CrossRefGoogle Scholar
  62. 62.
    Stone, G.W., Midei, M., Newman, W., et al.: Comparison of an everolimus-eluting stent and a paclitaxel-eluting stent in patients with coronary artery disease: a randomized trial. JAMA 299(16), 1903–1913 (2008)CrossRefGoogle Scholar
  63. 63.
    Mauri, L., Hsieh, W.H., Massaro, J.M., et al.: Stent thrombosis in randomized clinical trialsof drug-eluting stents. N. Engl. J. Med. 356(10), 1020–1029 (2007)CrossRefGoogle Scholar
  64. 64.
    Ostojic, M., et al.: First clinical comparison of Nobori-Biolimus A9 eluting stents with Cypher-SIROLIMUS eluting stents: NOBORI CORE nine months angiographic and one year clinical outcomes. Eurointervention 3, 574–579 (2008)CrossRefGoogle Scholar
  65. 65.
    Grube, E., Buellesfeld, L.: BioMatrix Biolimus A9-eluting coronary stent: a next-generation drug drug-eluting stent for coronary artery disease. Expert Rev. Med. Dev. 3, 731–741 (2006)CrossRefGoogle Scholar
  66. 66.
    Grube, E., et al.: Six-month results of a randomized study to evaluate safety and efficacy of a biolimus A9 eluting stent with a biodegradable polymer coating. Eurointervention 1, 53–57 (2005)Google Scholar
  67. 67.
    Donners, M.M., et al.: Inflammation and restenosis: implications for therapy. Ann. Med. 35(7), 523–531 (2003)CrossRefGoogle Scholar
  68. 68.
    Ac, Abizaid, et al.: The CardioMind coronary stent delivery system: stent delivery on a 0.014” guidewire platform. EuroInterv 3, 154–157 (2007)Google Scholar
  69. 69.
    Windecker, S., Serruys, P.W., Wandel, S., et al.: Biolimus-eluting stent with biodegradable polymer versus sirolimus-eluting stent with durable polymer for coronary revascularization (LEADERS): a randomized non-inferiority trial. Lancet 372(9644), 1163–1173 (2008)CrossRefGoogle Scholar
  70. 70.
    Meredith, I.T., Teirstein, P.S., Bouchard, A., Carrié, D., Möllmann, H., Oldroyd, K.G., et al.: Three-year results comparing platinum-chromium PROMUS elementand cobalt chromium XIENCEV everolimus-eluting stents in denovo coronary artery narrowing (from the PLATINUM Trial). Am. J. Cardiol. 113, 1117–1123 (2014)CrossRefGoogle Scholar
  71. 71.
    Ormiston, J.A., Webber, B., Webster, M.W.: Stent longitudinal integrity bench insights into a clinical problem. JACC Cardiovasc. Interv. 4, 1310–1317 (2011)CrossRefGoogle Scholar
  72. 72.
    Ormiston, J.A., Webber, B., Ubod, B., White, J., Webster, M.W.: Stent longitudinal strength assessed using point compression: insights from a second-generation, clinically related bench test. JACC Cardiovasc. Interv. 7, 62–69 (2014)CrossRefGoogle Scholar
  73. 73.
    Taniwaki, M., Stefanini, G.G., Silber, S., Richardt, G., Vranckx, P., Serruys, P.W., et al.: 4-year clinical outcomes and predictors of repeat revascularizationin patients treated withnew- generation drug-eluting stents: are port from the RESOLUTE All-Comers trial (a randomized comparison of a zotarolimus-eluting stent with an everolimus-eluting stent for percutaneous coronary intervention). J. Am. Coll. Cardiol. 63, 1617–1625 (2014)CrossRefGoogle Scholar
  74. 74.
    Camenzind, E., Wijns, W., Mauri, L., KurowskiV, Parikh K., Gao, R., et al.: Stent thrombosis and major clinical events at 3 years after zotarolimus-eluting or sirolimus-eluting coronary stent implantation: a randomised, multicentre, open- label, controlled trial. Lancet 380, 1396–1405 (2012)CrossRefGoogle Scholar
  75. 75.
    Park, D.W., Kim, Y.H., Yun, S.C., Kang, S.J., Lee, S.W., Lee, C.W., et al.: Comparison of zotarolimus-eluting stents with sirolimus- and paclitaxel-eluting stents for coronary revascularization: the ZEST (comparison of the efficacy and safety of zotarolimus-eluting stent with sirolimus-eluting and paclitaxel-eluting stent for coronary lesions) randomized trial. J. Am. Coll. Cardiol. 56, 1187–1195 (2010)CrossRefGoogle Scholar
  76. 76.
    Tandjung, K., SenH, Lam M.K., Basalus, M.W., Louwerenburg, J.H., Stoel, M.G., et al.: Clinical outcome following stringent dis- continuation of dual antiplatelet therapy after 12 months in real-world patients treated with second-generation zotarolimus-eluting resolute and everolimus-eluting Xience V stents: 2-yearfollow-up of the randomized TWENTE trial. J. Am. Coll. Cardiol. 61, 2406–2416 (2013)CrossRefGoogle Scholar
  77. 77.
    Park, K.W., Lee, J.M., Kang, S.H., Ahn, H.S., Kang, H.J., Koo, B.K., et al.: Everolimus-eluting xiencev/promus versus zotarolimus-eluting resolute e stents in patients with diabetes mellitus. JACC Cardiovasc. Interv. 7, 471–481 (2014)CrossRefGoogle Scholar
  78. 78.
    Tamai, H., et al.: Initial and 6-month results of biodegradable poly-L-Lactic acid coronary stents in humans. Circulation 102, 399–404 (2000)CrossRefGoogle Scholar
  79. 79.
    Ormiston, J.A., et al.: A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): a prospective open-label trial. Lancet 371(9616), 899–907 (2008)CrossRefGoogle Scholar
  80. 80.
    Serruys, P.W., et al.: Absorb trial first-in-man evaluation of a bioabsorbable everolimus-eluting coronary stent system: two-year outcomes and results from multiple imaging modalities. Lancet 373, 897–910 (2009)CrossRefGoogle Scholar
  81. 81.
    Ramcharitar, S., Serruys, P.W.: Fully biodegradable coronary stents: progress to date. Am. J. Cardiovasc. Drugs 8(5), 305–314 (2008)CrossRefGoogle Scholar
  82. 82.
    Jabara, R., et al.: Evaluation of a novel fully biodegradable salicylate-based sirolimus-eluting stent: histologic analysis in pig coronary artery implants. Am. J. Cardiol. 102, 187i (2008)Google Scholar
  83. 83.
    Erbel, R., et al.: Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomized multicentre trial. Lancet 369, 1869–1875 (2007)CrossRefGoogle Scholar
  84. 84.
    Ormiston, J., et al.: First-in-human implantation of a fully bioabsorbable drug-eluting stent: the BVS poly-L-Lactic acid everolimus-eluting coronary stent. Catheter Cardiovasc. Interv. 69, 128–131 (2007)CrossRefGoogle Scholar
  85. 85.
    Kimura, T., et al.: Remodeling responses of human coronary arteries undergoing coronary angioplasty and atherectomy. Circulation 96, 475–483 (1997)CrossRefGoogle Scholar
  86. 86.
    Nobuyoshi, M., et al.: Restenosis after successful percutaneous transluminal coronary angioplasty: serial angiographic follow-up of 229 patients. J. Am. Coll. Cardiol. 12, 616–623 (1988)CrossRefGoogle Scholar
  87. 87.
    Serruys, P.W., et al.: Incidence of restenosis after successful coronary angioplasty: a time-related phenomenon. A quantitative angiographic study in 342 consecutive patients at 1, 2, 3, and 4 months. Circulation 77, 361–371 (1988)CrossRefGoogle Scholar
  88. 88.
    Ormiston, J.A., Serruys, P.W.S.: Bioabsorbable coronary stents. Circ. Cardiovasc. Intervent. 2, 255–260 (2009)CrossRefGoogle Scholar
  89. 89.
    Gogas, B.D., et al.: Novel drug-eluting stents for coronary revascularization. Trends Cardiovascul. Med. 24, 305–313 (2014)CrossRefGoogle Scholar
  90. 90.
    Brito, L.A., Chandrasekhar, S., Little, S.R., Amiji, M.M.: In vitro and in vivo studies of local arterial gene delivery and transfection using lipopolyplexes-embeded stents. J. Biomed. Mater. Res. 93A, 325–336 (2009)Google Scholar
  91. 91.
    Yang, J., Zeng, Y., Zhang, C., et al.: The prevention of restenoss in vivo with a VEGF gene and paclitaxel co-eluting stent. Biomaterials 34, 1635–1643 (2013)CrossRefGoogle Scholar
  92. 92.
    Raina, T., Arnold, N., Moore, H., et al.: 152 Stem cell coated metallic coronary stents show accelerated strut coverage without excessive neointimal proliferation in a porcine model. Heart 100, A88–A89 (2014)CrossRefGoogle Scholar
  93. 93.
    Stone, G.W., Moses, J.W.: Ellis GS Safety and efficacy of sirolimus and paclitaxel-eluting coronary stents. N. Engl. J. Med. 356, 998–1008 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Mahmoud A. Elnaggar
    • 1
    • 2
  • Yoon Ki Joung
    • 1
    • 2
  • Dong Keun Han
    • 1
    • 2
  1. 1.Center for Biomaterials, Biomedical Research InstituteKorea Institute of Science and TechnologySeoulRepublic of Korea
  2. 2.Department of Biomedical EngineeringKorea University of Science and TechnologyYuseong-gu, DaejeonRepublic of Korea

Personalised recommendations