Cancer Imaging for Therapy Assessment

Part of the Biosystems & Biorobotics book series (BIOSYSROB, volume 9)


Monitoring tumor response following treatment is essential to tailor therapeutic strategy to achieve the most favorable clinical outcomes for cancer patients. Imaging is a non-invasive approach to assess tumor response quantitatively, and it has been clinically validated as a reliable tool. RECIST (Response Evaluation Criteria in Solid Tumors) is a published protocol to determine tumor response mainly based on change in tumor size as a response to therapy. The high-resolution anatomical information of a tumor can be obtained using computer tomography (CT), ultrasound imaging or magnetic resonance imaging (MRI). However, it is often insufficient to evaluate tumor viability and aggressiveness using only anatomical information, thus a new protocol named PERCIST (Positron Emission Tomography (PET) Response Criteria in Solid Tumors) has been recently proposed. PERCIST evaluates therapy based on the change of glycolic metabolism using 18F-FDG PET, and its effectiveness has been compared with RECIST. In addition, many other physiologic and molecular imaging modalities have been tested for more objective, rapid, and reproducible measurement of tumor response. In this chapter, both conventional and experimental non-invasive imaging modalities to evaluate therapy for cancer patients having solid tumors are reviewed.


CT MRI PET SPECT Ultrasound imaging Personalized medicine Precision medicine Physiologic imaging Molecular imaging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Murphy, S.L., Xu, J., Kochanek, K.D.: Deaths: final data for 2010. Natl. Vital. Stat. Rep. 61(4), 1–117 (2013)Google Scholar
  2. 2.
    Ang, K.K., Zhang, Q., Rosenthal, D.I., Nguyen-Tan, P.F., Sherman, E.J., Weber, R.S., et al.: Randomized phase III trial of concurrent accelerated radiation plus cisplatin with or without cetuximab for stage III to IV head and neck carcinoma: RTOG 0522. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology 32(27), 2940–2950 (2014). PMCID: 4162493CrossRefGoogle Scholar
  3. 3.
    Heymach, J.V., Nilsson, M., Blumenschein, G., Papadimitrakopoulou, V., Herbst, R.: Epidermal growth factor receptor inhibitors in development for the treatment of non-small cell lung cancer. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research 12(14 Pt 2), 4441s–4445s (2006)CrossRefGoogle Scholar
  4. 4.
    Maiello, E., Giuliani, F., Gebbia, V., Piano, A., Agueli, R., Colucci, G.: Cetuximab: clinical results in colorectal cancer. Ann. Oncol. 18(suppl 6), vi8–vi10 (2007)Google Scholar
  5. 5.
    Osborne, C.K.: Tamoxifen in the treatment of breast cancer. The New England Journal of Medicine 339(22), 1609–1618 (1998)CrossRefGoogle Scholar
  6. 6.
    Conroy, T., Desseigne, F., Ychou, M., Bouche, O., Guimbaud, R., Becouarn, Y., et al.: FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N. Engl. J. Med. 364(19), 1817–1825 (2011)CrossRefGoogle Scholar
  7. 7.
    Von Hoff, D.D., Ervin, T., Arena, F.P., Chiorean, E.G., Infante, J., Moore, M., et al.: Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. The New England Journal of Medicine 369(18), 1691–1703 (2013)CrossRefGoogle Scholar
  8. 8.
    Marquet, P., Longeray, P.H., Barlesi, F., Ameye, V., Auge, P., Cazeneuve, B., et al.: Translational research: precision medicine, personalized medicine, targeted therapies: marketing or science? Therapie 70(1), 11–19 (2015)CrossRefGoogle Scholar
  9. 9.
    Abrams, T.J., Lee, L.B., Murray, L.J., Pryer, N.K., Cherrington, J.M.: SU11248 inhibits KIT and platelet-derived growth factor receptor beta in preclinical models of human small cell lung cancer. Molecular Cancer Therapeutics 2(5), 471–478 (2003)Google Scholar
  10. 10.
    Baselga, J.: The EGFR as a target for anticancer therapy–focus on cetuximab. European Journal of Cancer 37(Suppl 4), S16–S22 (2001)CrossRefGoogle Scholar
  11. 11.
    Baselga, J., Norton, L., Albanell, J., Kim, Y.M., Mendelsohn, J.: Recombinant humanized anti-HER2 antibody (Herceptin) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografts. Cancer Research 58(13), 2825–2831 (1998)Google Scholar
  12. 12.
    Fritsche, M., Haessler, C., Brandner, G.: Induction of nuclear accumulation of the tumor-suppressor protein p53 by DNA-damaging agents. Oncogene 8(2), 307–318 (1993)Google Scholar
  13. 13.
    Eisenhauer, E.A., Therasse, P., Bogaerts, J., Schwartz, L.H., Sargent, D., Ford, R., et al.: New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). European Journal of Cancer 45(2), 228–247 (2009)CrossRefGoogle Scholar
  14. 14.
    Weedon-Fekjaer, H., Lindqvist, B.H., Vatten, L.J., Aalen, O.O., Tretli, S.: Breast cancer tumor growth estimated through mammography screening data. Breast Cancer Res. 10(3), R41 (2008). PMCID: 2481488CrossRefGoogle Scholar
  15. 15.
    Radon, J.: On the Determination of Functions from Their Integral Values along Certain Manifolds. IEEE. Trans. Med. Imaging 5(4), 170–176 (1986)CrossRefGoogle Scholar
  16. 16.
    Hounsfield, G.N.: Computerized transverse axial scanning (tomography). 1. Description of system. The British Journal of Radiology 46(552), 1016–1022 (1973)CrossRefGoogle Scholar
  17. 17.
    Zacharias, C., Alessio, A.M., Otto, R.K., Iyer, R.S., Philips, G.S., Swanson, J.O., et al.: Pediatric CT: strategies to lower radiation dose. AJR American Journal of Roentgenology 200(5), 950–956 (2013)CrossRefGoogle Scholar
  18. 18.
    Axente, M., Paidi, A., Von Eyben, R., Zeng, C., Bani-Hashemi, A., Krauss, A., et al.: Clinical evaluation of the iterative metal artifact reduction algorithm for CT simulation in radiotherapy. Med. Phys. 42(3), 1170 (2015)CrossRefGoogle Scholar
  19. 19.
    Lauterbur, P.C.: Image Formation by Induced Local Interactions: Examples Employing Nuclear Magnetic Resonance. Nature 242, 190–191 (1973)CrossRefGoogle Scholar
  20. 20.
    Marckmann, P., Skov, L., Rossen, K., Dupont, A., Damholt, M.B., Heaf, J.G., et al.: Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J. Am. Soc. Nephrol. 17(9), 2359–2362 (2006)CrossRefGoogle Scholar
  21. 21.
    Jain, R.K.: Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat. Med. 7(9), 987–989 (2001)CrossRefGoogle Scholar
  22. 22.
    Kim, H., Folks, K.D., Guo, L., Stockard, C.R., Fineberg, N.S., Grizzle, W.E., et al.: DCE-MRI detects early vascular response in breast tumor xenografts following anti-DR5 therapy. Molecular Imaging and Biology: MIB: the Official Publication of the Academy of Molecular Imaging 13(1), 94–103 (2011). PMCID: 4138021CrossRefGoogle Scholar
  23. 23.
    Feng, Y., Jeong, E.K., Mohs, A.M., Emerson, L., Lu, Z.R.: Characterization of tumor angiogenesis with dynamic contrast-enhanced MRI and biodegradable macromolecular contrast agents in mice. Magnetic Resonance in Medicine: Official Journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 60(6), 1347–1352 (2008). PMCID: 2649794CrossRefGoogle Scholar
  24. 24.
    Strul, D., Bendriem, B.: Robustness of anatomically guided pixel-by-pixel algorithms for partial volume effect correction in positron emission tomography. J. Cereb. Blood Flow Metab. 19(5), 547–559 (1999)CrossRefGoogle Scholar
  25. 25.
    Parker, G.J., Roberts, C., Macdonald, A., Buonaccorsi, G.A., Cheung, S., Buckley, D.L., et al.: Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magnetic Resonance in Medicine: Official Journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 56(5), 993–1000 (2006)CrossRefGoogle Scholar
  26. 26.
    Heye, T., Davenport, M.S., Horvath, J.J., Feuerlein, S., Breault, S.R., Bashir, M.R., et al.: Reproducibility of dynamic contrast-enhanced MR imaging. Part I. Perfusion characteristics in the female pelvis by using multiple computer-aided diagnosis perfusion analysis solutions. Radiology 266(3), 801–811 (2013)CrossRefGoogle Scholar
  27. 27.
    Pitre-Champagnat, S., Leguerney, I., Bosq, J., Peronneau, P., Kiessling, F., Calmels, L., et al.: Dynamic contrast-enhanced ultrasound parametric maps to evaluate intratumoral vascularization. Investigative Radiology 50(4), 212–217 (2015)CrossRefGoogle Scholar
  28. 28.
    Lassau, N., Bonastre, J., Kind, M., Vilgrain, V., Lacroix, J., Cuinet, M., et al.: Validation of dynamic contrast-enhanced ultrasound in predicting outcomes of antiangiogenic therapy for solid tumors: the French multicenter support for innovative and expensive techniques study. Investigative Radiology 49(12), 794–800 (2014). PMCID: 4222794CrossRefGoogle Scholar
  29. 29.
    Kim, H., Zhai, G., Liu, Z., Samuel, S., Shah, N., Helman, E.E., et al.: Extracelluar matrix metalloproteinase as a novel target for pancreatic cancer therapy. Anti-Cancer Drugs 22(9), 864–874 (2011)CrossRefGoogle Scholar
  30. 30.
    Kim, H., Arnoletti, P.J., Christein, J., Heslin, M.J., Posey, J.A., Pednekar, A., et al.: Pancreatic adenocarcinoma: a pilot study of quantitative perfusion and diffusion-weighted breath-hold magnetic resonance imaging. Abdom Imaging (2014)Google Scholar
  31. 31.
    Kim, H., Morgan, D.E., Zeng, H., Grizzle, W.E., Warram, J.M., Stockard, C.R., et al.: Breast tumor xenografts: diffusion-weighted MR imaging to assess early therapy with novel apoptosis-inducing anti-DR5 antibody. Radiology 248(3), 844–851 (2008)CrossRefGoogle Scholar
  32. 32.
    Wahl, R.L., Jacene, H., Kasamon, Y., Lodge, M.A.: From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine 50(Suppl 1), 122S–150S (2009). PMCID: 2755245CrossRefGoogle Scholar
  33. 33.
    van Waarde, A., Jager, P.L., Ishiwata, K., Dierckx, R.A., Elsinga, P.H.: Comparison of sigma-ligands and metabolic PET tracers for differentiating tumor from inflammation. J. Nucl. Med. 47(1), 150–154 (2006)Google Scholar
  34. 34.
    Smyczek-Gargya, B., Fersis, N., Dittmann, H., Vogel, U., Reischl, G., Machulla, H.J., et al.: PET with [18F]fluorothymidine for imaging of primary breast cancer: a pilot study. European Journal of Nuclear Medicine and Molecular Imaging 31(5), 720–724 (2004)CrossRefGoogle Scholar
  35. 35.
    Schwaiger, M., Wester, H.J.: How many PET tracers do we need? Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine. 52(Suppl 2), 36S–41S (2011)CrossRefGoogle Scholar
  36. 36.
    De Saint-Hubert, M., Brepoels, L., Mottaghy, F.M.: Can evaluation of targeted therapy in oncology be improved by means of 18F-FLT? Journal of nuclear medicine: official publication, Society of Nuclear Medicine. 51(10), 1499–1500 (2010)CrossRefGoogle Scholar
  37. 37.
    Sanghera, B., Wong, W.L., Sonoda, L.I., Beynon, G., Makris, A., Woolf, D., et al.: FLT PET-CT in evaluation of treatment response. Indian J. Nucl. Med. 29(2), 65–73 (2014). PMCID: 3996774CrossRefGoogle Scholar
  38. 38.
    McKinley, E.T., Ayers, G.D., Smith, R.A., Saleh, S.A., Zhao, P., Washington, M.K., et al.: Limits of [18F]-FLT PET as a biomarker of proliferation in oncology. PLoS One 8(3), e58938 (2013). PMCID: 3598948CrossRefGoogle Scholar
  39. 39.
    Yang, W., Zhang, Y., Fu, Z., Sun, X., Mu, D., Yu, J.: Imaging proliferation of (1)(8)F-FLT PET/CT correlated with the expression of microvessel density of tumour tissue in non-small-cell lung cancer. European Journal of Nuclear Medicine and Molecular Imaging 39(8), 1289–1296 (2012)CrossRefGoogle Scholar
  40. 40.
    Herrmann, K., Wieder, H.A., Buck, A.K., Schoffel, M., Krause, B.J., Fend, F., et al.: Early response assessment using 3’-deoxy-3’-[18F]fluorothymidine-positron emission tomography in high-grade non-Hodgkin’s lymphoma. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research. 13(12), 3552–3558 (2007)CrossRefGoogle Scholar
  41. 41.
    Benz, M.R., Czernin, J., Allen-Auerbach, M.S., Dry, S.M., Sutthiruangwong, P., Spick, C., et al.: 3’-deoxy-3’-[18F]fluorothymidine positron emission tomography for response assessment in soft tissue sarcoma: a pilot study to correlate imaging findings with tissue thymidine kinase 1 and Ki-67 activity and histopathologic response. Cancer 118(12), 3135–3144 (2012). PMCID: 3436595CrossRefGoogle Scholar
  42. 42.
    Ott, K., Herrmann, K., Schuster, T., Langer, R., Becker, K., Wieder, H.A., et al.: Molecular imaging of proliferation and glucose utilization: utility for monitoring response and prognosis after neoadjuvant therapy in locally advanced gastric cancer. Annals of surgical oncology 18(12), 3316–3323 (2011)CrossRefGoogle Scholar
  43. 43.
    Bos, M., Mendelsohn, J., Kim, Y.M., Albanell, J., Fry, D.W., Baselga, J.: PD153035, a tyrosine kinase inhibitor, prevents epidermal growth factor receptor activation and inhibits growth of cancer cells in a receptor number-dependent manner. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research 3(11), 2099–2106 (1997)Google Scholar
  44. 44.
    Fredriksson, A., Johnstrom, P., Thorell, J.O., von Heijne, G., Hassan, M., Eksborg, S., et al.: In vivo evaluation of the biodistribution of 11C-labeled PD153035 in rats without and with neuroblastoma implants. Life Sci. 65(2), 165–174 (1999)CrossRefGoogle Scholar
  45. 45.
    Wang, H., Yu, J., Yang, G., Song, X., Sun, X., Zhao, S., et al.: Assessment of 11C-labeled-4-N-(3-bromoanilino)-6,7-dimethoxyquinazoline as a positron emission tomography agent to monitor epidermal growth factor receptor expression. Cancer Science 98(9), 1413–1416 (2007)CrossRefGoogle Scholar
  46. 46.
    Wang, H., Yu, J.M., Song, X.R., Yang, G.R., Mu, D.B., Zhao, S.Q., et al.: Molecular imaging of epidermal growth factor receptor in glioma-bearing rats. Zhonghua Zhong Liu Za Zhi. 30(5), 343–346 (2008)Google Scholar
  47. 47.
    Meng, X., Loo Jr, B.W., Ma, L., Murphy, J.D., Sun, X., Yu, J.: Molecular imaging with 11C-PD153035 PET/CT predicts survival in non-small cell lung cancer treated with EGFR-TKI: a pilot study. Journal Of Nuclear Medicine: Official Publication, Society of Nuclear Medicine 52(10), 1573–1579 (2011)CrossRefGoogle Scholar
  48. 48.
    Sun, J., Cai, L., Zhang, K., Zhang, A., Pu, P., Yang, W., et al.: A pilot study on EGFR-targeted molecular imaging of PET/CT With 11C-PD153035 in human gliomas. Clin. Nucl. Med. 39(1), e20–e26 (2014)CrossRefGoogle Scholar
  49. 49.
    Mitri, Z., Constantine, T., O’Regan, R.: The HER2 Receptor in Breast Cancer: Pathophysiology, Clinical Use, and New Advances in Therapy. Chemother. Res. Pract. 743193 (2012). PMCID: 3539433Google Scholar
  50. 50.
    Dijkers, E.C., Kosterink, J.G., Rademaker, A.P., Perk, L.R., van Dongen, G.A., Bart, J., et al.: Development and characterization of clinical-grade 89Zr-trastuzumab for HER2/neu immunoPET imaging. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine 50(6), 974–981 (2009)CrossRefGoogle Scholar
  51. 51.
    Holmes, K., Roberts, O.L., Thomas, A.M., Cross, M.J.: Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cell. Signal. 19(10), 2003–2012 (2007)CrossRefGoogle Scholar
  52. 52.
    Lee, I., Yoon, K.Y., Kang, C.M., Lin, X., Chen, X., Kim, J.Y., et al.: Evaluation of the angiogenesis inhibitor KR-31831 in SKOV-3 tumor-bearing mice using (64)Cu-DOTA-VEGF(121) and microPET. Nucl. Med. Biol. 39(6), 840–846 (2012). PMCID: 3629961CrossRefGoogle Scholar
  53. 53.
    Ruoslahti, E.: Integrins. J. Clin. Invest. 87(1), 1–5 (1991). PMCID: 294975CrossRefGoogle Scholar
  54. 54.
    Beer, A.J., Niemeyer, M., Carlsen, J., Sarbia, M., Nahrig, J., Watzlowik, P., et al.: Patterns of alphavbeta3 expression in primary and metastatic human breast cancer as shown by 18F-Galacto-RGD PET. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine 49(2), 255–259 (2008)CrossRefGoogle Scholar
  55. 55.
    Schnell, O., Krebs, B., Carlsen, J., Miederer, I., Goetz, C., Goldbrunner, R.H., et al.: Imaging of integrin alpha(v)beta(3) expression in patients with malignant glioma by [18F] Galacto-RGD positron emission tomography. Neuro Oncol. 11(6), 861–870 (2009). PMCID: 2802406CrossRefGoogle Scholar
  56. 56.
    Perik, P.J., Lub-De Hooge, M.N., Gietema, J.A., van der Graaf, W.T., de Korte, M.A., Jonkman, S., et al.: Indium-111-labeled trastuzumab scintigraphy in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 24(15), 2276–2282 (2006)CrossRefGoogle Scholar
  57. 57.
    Gaykema, S.B, de Jong J.R., Perik P..J, Brouwers, A.H., Schroder, C.P., Oude Munnink, T.H, et al.: (111)In-trastuzumab scintigraphy in HER2-positive metastatic breast cancer patients remains feasible during trastuzumab treatment. Molecular Imaging 13 (2014)Google Scholar
  58. 58.
    Axelsson, R., Bach-Gansmo, T., Castell-Conesa, J., McParland, B.J.: An open-label, multicenter, phase 2a study to assess the feasibility of imaging metastases in late-stage cancer patients with the alpha v beta 3-selective angiogenesis imaging agent 99mTc-NC100692. Acta. Radiol. 51(1), 40–46 (2010)CrossRefGoogle Scholar
  59. 59.
    Bach-Gansmo, T., Danielsson, R., Saracco, A., Wilczek, B., Bogsrud, T.V., Fangberget, A., et al.: Integrin receptor imaging of breast cancer: a proof-of-concept study to evaluate 99mTc-NC100692. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine 47(9), 1434–1439 (2006)Google Scholar
  60. 60.
    Levashova, Z., Backer, M., Hamby, C.V., Pizzonia, J., Backer, J.M., Blankenberg, F.G.: Molecular imaging of changes in the prevalence of vascular endothelial growth factor receptor in sunitinib-treated murine mammary tumors. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine 51(6), 959–966 (2010)CrossRefGoogle Scholar
  61. 61.
    Gunanathan, C., Pais, A., Furman-Haran, E., Seger, D., Eyal, E., Mukhopadhyay, S., et al.: Water-soluble contrast agents targeted at the estrogen receptor for molecular magnetic resonance imaging. Bioconjug Chem. 18(5), 1361–1365 (2007)CrossRefGoogle Scholar
  62. 62.
    Pais, A., Gunanathan, C., Margalit, R., Biton, I.E., Yosepovich, A., Milstein, D., et al.: In vivo magnetic resonance imaging of the estrogen receptor in an orthotopic model of human breast cancer. Cancer Research 71(24), 7387–7397 (2011). PMCID: 3242887CrossRefGoogle Scholar
  63. 63.
    Moghimi, S.M., Hunter, A.C., Murray, J.C.: Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev. 53(2), 283–318 (2001)Google Scholar
  64. 64.
    Kohler, N., Sun, C., Fichtenholtz, A., Gunn, J., Fang, C., Zhang, M.: Methotrexate-immobilized poly(ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery. Small 2(6), 785–792 (2006)CrossRefGoogle Scholar
  65. 65.
    Lacava, L.M., Lacava, Z.G., Da Silva, M.F., Silva, O., Chaves, S.B., Azevedo, R.B., et al.: Magnetic resonance of a dextran-coated magnetic fluid intravenously administered in mice. Biophys. J. 80(5), 2483–2486 (2001). PMCID: 1301436CrossRefGoogle Scholar
  66. 66.
    Quaglia, F., Ostacolo, L., De Rosa, G., La Rotonda, M.I., Ammendola, M., Nese, G., et al.: Nanoscopic core-shell drug carriers made of amphiphilic triblock and star-diblock copolymers. Int. J. Pharm. 324(1), 56–66 (2006)CrossRefGoogle Scholar
  67. 67.
    Chen, H., Wang, L., Yu, Q., Qian, W., Tiwari, D., Yi, H., et al.: Anti-HER2 antibody and ScFvEGFR-conjugated antifouling magnetic iron oxide nanoparticles for targeting and magnetic resonance imaging of breast cancer. Int. J. Nanomedicine 8, 3781–3794 (2013). PMCID: 3794963Google Scholar
  68. 68.
    Yang, H.M., Park, C.W., Woo, M.A., Kim, M.I., Jo, Y.M., Park, H.G., et al.: HER2/neu Antibody Conjugated Poly(amino acid)-Coated Iron Oxide Nanoparticles for Breast Cancer MR Imaging. Biomacromolecules 11(11), 2866–2872 (2010)CrossRefGoogle Scholar
  69. 69.
    Hadjipanayis, C.G., Machaidze, R., Kaluzova, M., Wang, L., Schuette, A.J., Chen, H., et al.: EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery and targeted therapy of glioblastoma. Cancer Research 70(15), 6303–6312 (2010). PMCID: 2912981CrossRefGoogle Scholar
  70. 70.
    Lyshchik, A., Fleischer, A.C., Huamani, J., Hallahan, D.E., Brissova, M., Gore, J.C.: Molecular imaging of vascular endothelial growth factor receptor 2 expression using targeted contrast-enhanced high-frequency ultrasonography. Journal of Ultrasound in Medicine: Official Journal of the American Institute of Ultrasound in Medicine 26(11), 1575–1586 (2007). PMCID: 2634836Google Scholar
  71. 71.
    Korpanty, G., Carbon, J.G., Grayburn, P.A., Fleming, J.B., Brekken, R.A.: Monitoring response to anticancer therapy by targeting microbubbles to tumor vasculature. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research 13(1), 323–330 (2007)CrossRefGoogle Scholar
  72. 72.
    Anderson, C.R., Hu, X., Zhang, H., Tlaxca, J., Decleves, A.E., Houghtaling, R., et al.: Ultrasound molecular imaging of tumor angiogenesis with an integrin targeted microbubble contrast agent. Investigative Radiology 46(4), 215–224 (2011). PMCID: 3075480CrossRefGoogle Scholar
  73. 73.
    Sorace, A.G., Saini, R., Mahoney, M., Hoyt, K.: Molecular ultrasound imaging using a targeted contrast agent for assessing early tumor response to antiangiogenic therapy. J. Ultrasound Med. 31(10), 1543–1550 (2012). PMCID: PMC3464103Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of RadiologyThe University of Alabama at BirminghamBirminghamUSA

Personalised recommendations