Advertisement

Biomedical in vivo Optical Imaging for Disease Espying and Diagnosis

  • Abdul Mohaimen Safi
  • Euiheon Chung
Chapter
Part of the Biosystems & Biorobotics book series (BIOSYSROB, volume 9)

Abstract

Biomedical optical imaging is a rapidly emerging field providing non-invasive or minimally invasive means in the preclinical and clinical realm. At present, optical imaging can deliver structural and functional information in great detail, making it a contender for biopsy. In vivo optical imaging modalities can perform an ‘optical biopsy’ that is envisaged to have a substantial impact on the detection and diagnosis of a myriad of diseases. Here we introduce optical modalities ranging from the nanoscopic to macroscopic scale. We have illustrated their recent developments in preclinical areas and also highlighted clinical optical imaging technologies that have moved from ‘benchtop to bedside’. Their perspectives and remaining challenges are also depicted. An abridged review, covering the applications of optical imaging for diagnosis of diseases and its future in guided treatment and monitoring therapies has been presented, which will be a suitable reference for the researchers who aspire to enter into the arena of biomedical optical imaging in vivo.

Keywords

Biomedical optics In vivo imaging Optical biopsy Optical diagnosis Preclinical Clinical Benchtop to bedside Cancer Neurodegenerative diseases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Horton, N.G., et al.: In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nature Photonics 7(3), 205–209 (2013)Google Scholar
  2. 2.
    Chen, B.-C., et al.: Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. Science 346(6208), 1257998 (2014)Google Scholar
  3. 3.
    Boas, D.A., Pitris, C., Ramanujam, N. (eds.): Handbook of biomedical optics. CRC Press, Boca Raton (2011)Google Scholar
  4. 4.
    Ellis, D.I., et al.: Illuminating disease and enlightening biomedicine: Raman spectroscopy as a diagnostic tool. Analyst 138(14), 3871–3884 (2013)Google Scholar
  5. 5.
    Minsky, M.: Microscopy apparatus. Google Patents (1961)Google Scholar
  6. 6.
    Minsky, M.: Memoir on inventing the confocal scanning microscope. Scanning 10(4), 128–138 (1988)Google Scholar
  7. 7.
    Pawley, J., Masters, B.R.: Handbook of biological confocal microscopy. Optical Engineering 35(9), 2765–2766 (1996)Google Scholar
  8. 8.
    Denk, W., Strickler, J.H., Webb, W.W.: Two-photon laser scanning fluorescence microscopy. Science 248(4951), 73–76 (1990)Google Scholar
  9. 9.
    Helmchen, F., Denk, W.: Deep tissue two-photon microscopy. Nature Methods 2(12), 932–940 (2005)Google Scholar
  10. 10.
    Abbe, E.: Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für Mikroskopische Anatomie 9(1), 413–418 (1873)Google Scholar
  11. 11.
    Park, Y.I., et al.: Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging. Chemical Society Reviews 44, 1302–1317 (2015)Google Scholar
  12. 12.
    Hell, S.W., Wichmann, J.: Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Optics Letters 19(11), 780–782 (1994)Google Scholar
  13. 13.
    Klar, T.A., Hell, S.W.: Subdiffraction resolution in far-field fluorescence microscopy. Optics Letters 24(14), 954–956 (1999)Google Scholar
  14. 14.
    Hofmann, M., et al.: Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proceedings of the National Academy of Sciences of the United States of America 102(49), 17565–17569 (2005)Google Scholar
  15. 15.
    Gustafsson, M.G.: Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proceedings of the National Academy of Sciences of the United States of America 102(37), 13081–13086 (2005)Google Scholar
  16. 16.
    Heintzmann, R., Jovin, T.M., Cremer, C.: Saturated patterned excitation microscopy—a concept for optical resolution improvement. JOSA A 19(8), 1599–1609 (2002)Google Scholar
  17. 17.
    Rust, M.J., Bates, M., Zhuang, X.: Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods 3(10), 793–796 (2006)Google Scholar
  18. 18.
    Betzig, E., et al.: Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793), 1642–1645 (2006)Google Scholar
  19. 19.
    Hess, S.T., Girirajan, T.P., Mason, M.D.: Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophysical Journal 91(11), 4258–4272 (2006)Google Scholar
  20. 20.
    Dickson, R.M., et al.: On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388(6640), 355–358 (1997)Google Scholar
  21. 21.
    Moerner, W., Kador, L.: Optical detection and spectroscopy of single molecules in a solid. Physical Review Letters 62(21), 2535 (1989)Google Scholar
  22. 22.
    Huang, B., Babcock, H., Zhuang, X.: Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143(7), 1047–1058 (2010)Google Scholar
  23. 23.
    Keller, P.J., Ahrens, M.B.: Visualizing Whole-Brain Activity and Development at the Single-Cell Level Using Light-Sheet Microscopy. Neuron 85(3), 462–483 (2015)Google Scholar
  24. 24.
    Keller, P.J., Ahrens, M.B., Freeman, J.: Light-sheet imaging for systems neuroscience. Nature Methods 12(1), 27–29 (2015)Google Scholar
  25. 25.
    Keller, P.J., Dodt, H.-U.: Light sheet microscopy of living or cleared specimens. Current Opinion in Neurobiology 22(1), 138–143 (2012)Google Scholar
  26. 26.
    Krzic, U., et al.: Multiview light-sheet microscope for rapid in toto imaging. Nature Methods 9(7), 730–733 (2012)Google Scholar
  27. 27.
    Stelzer, E.H.: Light-sheet fluorescence microscopy for quantitative biology. Nature Methods 12(1), 23–26 (2015)MathSciNetGoogle Scholar
  28. 28.
    Dodt, H.-U., et al.: Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nature Methods 4(4), 331–336 (2007)Google Scholar
  29. 29.
    Bouchard, M.B., et al.: Swept confocally-aligned planar excitation (SCAPE) microscopy for high-speed volumetric imaging of behaving organisms. Nat. Photon. 9(2), 113–119 (2015)Google Scholar
  30. 30.
    Chen, Y., et al.: Recent advances in two-photon imaging: technology developments and biomedical applications. Chinese Optics Letters 11(1), 011703 (2013)Google Scholar
  31. 31.
    Taruttis, A., Ntziachristos, V.: Translational optical imaging. American Journal of Roentgenology 199(2), 263–271 (2012)Google Scholar
  32. 32.
    Hillman, E.M., et al.: In vivo optical imaging and dynamic contrast methods for biomedical research. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2011(369), 4620–4643 (1955)Google Scholar
  33. 33.
    Patterson, A.P., Booth, S.A., Saba, R.: The Emerging Use of In Vivo Optical Imaging in the Study of Neurodegenerative Diseases. BioMed Research International, 14 (2014)Google Scholar
  34. 34.
    Ryu, Y., et al.: Lensed fiber-optic probe design for efficient photon collection in scattering media. Biomedical Optics Express 6(1), 191–210 (2015)MathSciNetGoogle Scholar
  35. 35.
    Ntziachristos, V.: Going deeper than microscopy: the optical imaging frontier in biology. Nature Methods 7(8), 603–614 (2010)Google Scholar
  36. 36.
    Ellenbroek, S.I., van Rheenen, J.: Imaging hallmarks of cancer in living mice. Nature Reviews Cancer 14(6), 406–418 (2014)Google Scholar
  37. 37.
    Ntziachristos, V., et al.: Looking and listening to light: the evolution of whole-body photonic imaging. Nature Biotechnology 23(3), 313–320 (2005)Google Scholar
  38. 38.
    Kodack, D.P., et al.: Combined targeting of HER2 and VEGFR2 for effective treatment of HER2-amplified breast cancer brain metastases. Proceedings of the National Academy of Sciences 109(45), E3119–E3127 (2012)Google Scholar
  39. 39.
    Wang, X., et al.: Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nature Biotechnology 21(7), 803–806 (2003)Google Scholar
  40. 40.
    Bouma, B.: Handbook of optical coherence tomography. Informa Health Care (2001)Google Scholar
  41. 41.
    Tsai, T.-H., Fujimoto, J.G., Mashimo, H.: Endoscopic optical coherence tomography for clinical gastroenterology. Diagnostics 4(2), 57–93 (2014)Google Scholar
  42. 42.
    Chung, E., et al.: Uncovering tumor biology by intravital microscopy. In: Comprehensive Biomedical Physics, pp. 153–164. Elsevier, Oxford (2014)Google Scholar
  43. 43.
    Iftimia, N., Brugge, W.R., Hammer, D.X.: Advances in Optical Imaging for Clinical Medicine, vol. 6. John Wiley & Sons (2011)Google Scholar
  44. 44.
    Fujimoto, J.G., et al.: The development of OCT. In: Cardiovascular OCT Imaging, pp. 1–21. Springer (2015)Google Scholar
  45. 45.
    Li, J., et al.: Polarization sensitive optical frequency domain imaging system for endobronchial imaging. Optics Express 23(3), 3390–3402 (2015)Google Scholar
  46. 46.
    Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy. Nature Methods 2(12), 920–931 (2005)Google Scholar
  47. 47.
    Gualda, E., et al.: Going “open” with Mesoscopy: a new dimension on multi-view imaging. Protoplasma 251(2), 363–372 (2014)Google Scholar
  48. 48.
    Figueiras, E., et al.: Optical projection tomography as a tool for 3D imaging of hydrogels. Biomedical Optics Express 5(10), 3443–3449 (2014)Google Scholar
  49. 49.
    Rieckher, M., et al.: Microscopic optical projection tomography in vivo. PloS One 6(4), e18963 (2011)Google Scholar
  50. 50.
    Sharpe, J., et al.: Optical projection tomography as a tool for 3D microscopy and gene expression studies. Science 296(5567), 541–545 (2002)Google Scholar
  51. 51.
    Vinegoni, C., et al.: In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography. Nature Methods 5(1), 45–47 (2008)Google Scholar
  52. 52.
    Ozturk, M.S., et al.: Mesoscopic Fluorescence Tomography of a Photosensitizer (HPPH) 3D Biodistribution in Skin Cancer. Academic Radiology 21(2), 271–280 (2014)Google Scholar
  53. 53.
    Vinegoni, C., et al.: Mesoscopic fluorescence tomography for in-vivo imaging of developing Drosophila. Journal of Visualized Experiments: JoVE 30, e1510 (2009)Google Scholar
  54. 54.
    Zhang, H.F., Maslov, K., Wang, L.V.: In vivo imaging of subcutaneous structures using functional photoacoustic microscopy. Nature Protocols 2(4), 797–804 (2007)Google Scholar
  55. 55.
    Wang, L.V., Hu, S.: Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335(6075), 1458–1462 (2012)Google Scholar
  56. 56.
    Zhang, H.F., et al.: Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nature Biotechnology 24(7), 848–851 (2006)Google Scholar
  57. 57.
    Ma, R., et al.: Multispectral optoacoustic tomography (MSOT) scanner for whole-body small animal imaging. Optics Express 17(24), 21414–21426 (2009)Google Scholar
  58. 58.
    Ntziachristos, V., Razansky, D.: Molecular imaging by means of multispectral optoacoustic tomography (MSOT). Chemical Reviews 110(5), 2783–2794 (2010)Google Scholar
  59. 59.
    Razansky, D., Baeten, J., Ntziachristos, V.: Sensitivity of molecular target detection by multispectral optoacoustic tomography (MSOT). Medical Physics 36(3), 939–945 (2009)Google Scholar
  60. 60.
    Razansky, D., Buehler, A., Ntziachristos, V.: Volumetric real-time multispectral optoacoustic tomography of biomarkers. Nature Protocols 6(8), 1121–1129 (2011)Google Scholar
  61. 61.
    Contag, C.H., Bachmann, M.H.: Advances in in vivo bioluminescence imaging of gene expression. Annual Review of Biomedical Engineering 4(1), 235–260 (2002)Google Scholar
  62. 62.
    Rehemtulla, A., et al.: Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging. Neoplasia 2(6), 491–495 (2000)Google Scholar
  63. 63.
    Sato, A., Klaunberg, B., Tolwani, R.: In vivo bioluminescence imaging. Comparative Medicine 54(6), 631–634 (2004)Google Scholar
  64. 64.
    Shah, K., Weissleder, R.: Molecular optical imaging: applications leading to the development of present day therapeutics. NeuroRx 2(2), 215–225 (2005)Google Scholar
  65. 65.
    Amiot, C.L., et al.: Near-infrared fluorescent materials for sensing of biological targets. Sensors 8(5), 3082–3105 (2008)Google Scholar
  66. 66.
    Ale, A., et al.: FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography. Nature Methods 9(6), 615–620 (2012)Google Scholar
  67. 67.
    Berning, S., et al.: Nanoscopy in a living mouse brain. Science 335(6068), 551 (2012)Google Scholar
  68. 68.
    Pellett, P.A., et al.: Two-color STED microscopy in living cells. Biomedical Optics Express 2(8), 2364–2371 (2011)Google Scholar
  69. 69.
    Cang, H., et al.: Gold nanocages as contrast agents for spectroscopic optical coherence tomography. Optics Letters 30(22), 3048–3050 (2005)Google Scholar
  70. 70.
    Adler, D.C., et al.: Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography. Optics Express 16(7), 4376–4393 (2008)Google Scholar
  71. 71.
    Gratton, E.: Deeper tissue imaging with total detection. Science 331(6020), 1016–1017 (2011)Google Scholar
  72. 72.
    Chong, K., et al.: Current Optical Imaging Techniques for Brain Tumor Research: Application of in vivo Laser Scanning Microscopy Imaging with a Cranial Window System, pp. 155–172. InTech, Rijeka (2011)Google Scholar
  73. 73.
    Yao, J., et al.: Label-free oxygen-metabolic photoacoustic microscopy in vivo. Journal of Biomedical Optics 16(7), 076003-11 (2011)Google Scholar
  74. 74.
    Mallidi, S., et al.: Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer. Nano Letters 9(8), 2825–2831 (2009)Google Scholar
  75. 75.
    Stiel, A.C., et al.: High contrast imaging of reversibly switchable fluorescent proteins via temporally unmixed Multispectral Optoacoustic Tomography (tuMSOT). arXiv preprint arXiv:1412.3241 (2014)
  76. 76.
    Contag, C.H., Ross, B.D.: It’s not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology. Journal of Magnetic Resonance Imaging 16(4), 378–387 (2002)Google Scholar
  77. 77.
    Watts, J.C., et al.: Bioluminescence imaging of Aβ deposition in bigenic mouse models of Alzheimer’s disease. Proceedings of the National Academy of Sciences 108(6), 2528–2533 (2011)Google Scholar
  78. 78.
    Choi, M., et al.: Minimally invasive molecular delivery into the brain using optical modulation of vascular permeability. Proceedings of the National Academy of Sciences 108(22), 9256–9261 (2011)Google Scholar
  79. 79.
    Kuiper, T., et al.: Feasibility and accuracy of confocal endomicroscopy in comparison with narrow-band imaging and chromoendoscopy for the differentiation of colorectal lesions. The American Journal of Gastroenterology 107(4), 543–550 (2012)Google Scholar
  80. 80.
    Shahid, M.W., et al.: Diagnostic accuracy of probe-based confocal laser endomicroscopy in detecting residual colorectal neoplasia after EMR: a prospective study. Gastrointestinal Endoscopy 75(3), 525–533 (2012). e1Google Scholar
  81. 81.
    Kim, P., et al.: In vivo wide-area cellular imaging by side-view endomicroscopy. Nature Methods 7(4), 303–305 (2010)Google Scholar
  82. 82.
    Wallace, M., et al.: Miami classification for probe-based confocal laser endomicroscopy 43(10), 882–891 (2011)Google Scholar
  83. 83.
    Oh, G., et al.: Intravital imaging of mouse colonic adenoma using MMP-based molecular probes with multi-channel fluorescence endoscopy. Biomedical Optics Express 5(5), 1677–1689 (2014)Google Scholar
  84. 84.
    Habibollahi, P., et al.: Optical imaging with a cathepsin B activated probe for the enhanced detection of esophageal adenocarcinoma by dual channel fluorescent upper GI endoscopy. Theranostics 2(2), 227 (2012)Google Scholar
  85. 85.
    Hsiung, P.-L., et al.: Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy. Nature Medicine 14(4), 454–458 (2008)MathSciNetGoogle Scholar
  86. 86.
    Winkler, A.M., et al.: Quantitative tool for rapid disease mapping using optical coherence tomography images of azoxymethane-treated mouse colon. Journal of Biomedical Optics 15(4), 041512-10 (2010)Google Scholar
  87. 87.
    Alex, A., et al.: Characterization of eosinophilic esophagitis murine models using optical coherence tomography. Biomedical Optics Express 5(2), 609–620 (2014)Google Scholar
  88. 88.
    Iftimia, N., et al.: Fluorescence-guided optical coherence tomography imaging for colon cancer screening: a preliminary mouse study. Biomedical Optics Express 3(1), 178–191 (2012)Google Scholar
  89. 89.
    Kothapalli, S.-R., et al.: Endoscopic imaging of Cerenkov luminescence. Biomedical Optics Express 3(6), 1215–1225 (2012)Google Scholar
  90. 90.
    Liu, H., et al.: Intraoperative imaging of tumors using Cerenkov luminescence endoscopy: a feasibility experimental study. Journal of Nuclear Medicine 53(10), 1579–1584 (2012)Google Scholar
  91. 91.
    Mitchell, G.S., et al.: In vivo Cerenkov luminescence imaging: a new tool for molecular imaging. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 2011(369), 4605–4619 (1955)Google Scholar
  92. 92.
    Liu, L., Mason, R.P., Gimi, B.: Dynamic bioluminescence and fluorescence imaging of the effects of the antivascular agent Combretastatin-A4P (CA4P) on brain tumor xenografts. Cancer Letters 356(2), 462–469 (2015)Google Scholar
  93. 93.
    O’Neill, K., et al.: Bioluminescent imaging: a critical tool in pre-clinical oncology research. The Journal of Pathology 220(3), 317–327 (2010)Google Scholar
  94. 94.
    Uhrbom, L., Nerio, E., Holland, E.C.: Dissecting tumor maintenance requirements using bioluminescence imaging of cell proliferation in a mouse glioma model. Nature Medicine 10(11), 1257–1260 (2004)Google Scholar
  95. 95.
    Na, J.H., et al.: Real-time and non-invasive optical imaging of tumor-targeting glycol chitosan nanoparticles in various tumor models. Biomaterials 32(22), 5252–5261 (2011)Google Scholar
  96. 96.
    Vakoc, B.J., et al.: Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nature Medicine 15(10), 1219–1223 (2009)Google Scholar
  97. 97.
    Barretto, R.P., et al.: Time-lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy. Nature Medicine 17(2), 223–228 (2011)Google Scholar
  98. 98.
    Ntziachristos, V., Chance, B.: Breast imaging technology: Probing physiology and molecular function using optical imaging-applications to breast cancer. Breast Cancer Research 3(1), 41 (2000)Google Scholar
  99. 99.
    Chung, E., et al.: Secreted Gaussia luciferase as a biomarker for monitoring tumor progression and treatment response of systemic metastases. PloS One 4(12), e8316 (2009)Google Scholar
  100. 100.
    Kedrin, D., et al.: Intravital imaging of metastatic behavior through a mammary imaging window. Nature Methods 5(12), 1019–1021 (2008)Google Scholar
  101. 101.
    Koronyo-Hamaoui, M., et al.: Identification of amyloid plaques in retinas from Alzheimer’s patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. Neuroimage 54, S204–S217 (2011)Google Scholar
  102. 102.
    Meyer-Luehmann, M., et al.: Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer’s disease. Nature 451(7179), 720–724 (2008)Google Scholar
  103. 103.
    Skoch, J., et al.: Development of an optical approach for noninvasive imaging of Alzheimer’s disease pathology. Journal of Biomedical Optics 10(1), 011007–0110077 (2005)Google Scholar
  104. 104.
    Schwartz, T.H., Bonhoeffer, T.: In vivo optical mapping of epileptic foci and surround inhibition in ferret cerebral cortex. Nature Medicine 7(9), 1063–1067 (2001)Google Scholar
  105. 105.
    Binder, D.K., Haut, S.R.: Toward new paradigms of seizure detection. Epilepsy & Behavior 26(3), 247–252 (2013)Google Scholar
  106. 106.
    Guevara, E., et al.: Optical imaging of acute epileptic networks in mice. Journal of Biomedical Optics 18(7), 076021 (2013)Google Scholar
  107. 107.
    Haglund, M.M.: Optical imaging of visual cortex epileptic foci and propagation pathways. Epilepsia 53(s1), 87–97 (2012)MathSciNetGoogle Scholar
  108. 108.
    Zhang, T., et al.: Pre-seizure state identified by diffuse optical tomography. Scientific Reports 4, 3798 (2014). doi: 10.1038/srep03798110 Google Scholar
  109. 109.
    Yu, L., et al.: Spectral Doppler optical coherence tomography imaging of localized ischemic stroke in a mouse model. Journal of Biomedical Optics 15(6), 066006 (2010)Google Scholar
  110. 110.
    Winship, I.R., et al.: Augmenting collateral blood flow during ischemic stroke via transient aortic occlusion. Journal of Cerebral Blood Flow & Metabolism 34(1), 61–71 (2014)Google Scholar
  111. 111.
    Clarkson, A.N., et al.: Multimodal examination of structural and functional remapping in the mouse photothrombotic stroke model. Journal of Cerebral Blood Flow & Metabolism 33(5), 716–723 (2013)Google Scholar
  112. 112.
    Lay, C.C., et al.: Mild sensory stimulation protects the aged rodent from cortical ischemic stroke after permanent middle cerebral artery occlusion. Journal of the American Heart Association 1(4), e001255 (2012)Google Scholar
  113. 113.
    Zhang, S., Murphy, T.H.: Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo. PLoS Biology 5(5), e119 (2007)Google Scholar
  114. 114.
    Taruttis, A., et al.: Real-time imaging of cardiovascular dynamics and circulating gold nanorods with multispectral optoacoustic tomography. Optics Express 18(19), 19592–19602 (2010)Google Scholar
  115. 115.
    Jaffer, F.A., et al.: Two-dimensional intravascular near-infrared fluorescence molecular imaging of inflammation in atherosclerosis and stent-induced vascular injury. Journal of the American College of Cardiology 57(25), 2516–2526 (2011)Google Scholar
  116. 116.
    Guillermo, J.T., et al.: Optical coherence tomography in cardiology. In: Handbook of Optical Coherence Tomography, pp. 693–703. CRC Press (2001)Google Scholar
  117. 117.
    Chauhan, B.C., et al.: Longitudinal in vivo imaging of retinal ganglion cells and retinal thickness changes following optic nerve injury in mice. PloS One 7(6), e40352 (2012)Google Scholar
  118. 118.
    Luker, G.D., Luker, K.E.: Optical imaging: current applications and future directions. Journal of Nuclear Medicine 49(1), 1–4 (2008)Google Scholar
  119. 119.
    Napp, J., Mathejczyk, J.E., Alves, F.: Optical imaging in vivo with a focus on paediatric disease: technical progress, current preclinical and clinical applications and future perspectives. Pediatric Radiology 41(2), 161–175 (2011)Google Scholar
  120. 120.
    Shin, D., et al.: A fiber-optic fluorescence microscope using a consumer-grade digital camera for in vivo cellular imaging. PloS One 5(6), e11218 (2010)Google Scholar
  121. 121.
    Wang, T.D., Van Dam, J.: Optical biopsy: a new frontier in endoscopic detection and diagnosis. Clinical Gastroenterology and Hepatology 2(9), 744–753 (2004)Google Scholar
  122. 122.
    Castillo, M., et al.: Optical coherence tomography for the diagnosis of neovascular age-related macular degeneration: a systematic review. Eye 28(12), 1399–1406 (2014)Google Scholar
  123. 123.
    Mrugacz, M., Bakunowicz-Lazarczyk, A.: Optical coherence tomography measurement of the retinal nerve fiber layer in normal and juvenile glaucomatous eyes. Ophthalmologica. Journal International D’ophtalmologie. International Journal of Ophthalmology. Zeitschrift fur Augenheilkunde 219(2), 80–85 (2004)Google Scholar
  124. 124.
    Blatter, C., et al.: In situ structural and microangiographic assessment of human skin lesions with high-speed OCT. Biomedical Optics Express 3(10), 2636–2646 (2012)Google Scholar
  125. 125.
    Koenig, K., et al.: Clinical optical coherence tomography combined with multiphoton tomography of patients with skin diseases. Journal of Biophotonics 2(6–7), 389–397 (2009)Google Scholar
  126. 126.
    Fujimoto, J.G., Farkas, D.: Biomedical optical imaging. Oxford University Press, New York (2009)Google Scholar
  127. 127.
    Zhou, C., et al.: Cervical inlet patch-optical coherence tomography imaging and clinical significance. World Journal of Gastroenterology 18(20), 2502–2510 (2012)Google Scholar
  128. 128.
    Zhou, C., et al.: Three-dimensional endoscopic optical coherence tomography imaging of cervical inlet patch. Gastrointestinal Endoscopy 75(3), 675–677 (2012)Google Scholar
  129. 129.
    Chu, E.M.-Y., et al.: A window into the brain: An in vivo study of the retina in schizophrenia using optical coherence tomography. Psychiatry Research: Neuroimaging 203(1), 89–94 (2012)Google Scholar
  130. 130.
    Larrosa, J.M., et al.: Potential new diagnostic tool for Alzheimer’s disease using a linear discriminant function for Fourier domain optical coherence tomography. Investigative Ophthalmology & Visual Science 55(5), 3043–3051 (2014)Google Scholar
  131. 131.
    Satue, M., et al.: Use of Fourier-domain OCT to detect retinal nerve fiber layer degeneration in Parkinson’s disease patients. Eye 27(4), 507–514 (2013)Google Scholar
  132. 132.
    Halpern, A.C., Rajadhyaksha, M., Toledo-Crow, R.: Bringing histology to the bedside. Journal of Investigative Dermatology 124(3), viii–x (2005)Google Scholar
  133. 133.
    Goetz, M.: Confocal Laser Endomicroscopy: Applications in Clinical and Translational Science—A Comprehensive Review. ISRN Pathology, pp. 1–13 (2012)Google Scholar
  134. 134.
    Dimitrow, E., et al.: Sensitivity and specificity of multiphoton laser tomography for in vivo and ex vivo diagnosis of malignant melanoma. Journal of Investigative Dermatology 129(7), 1752–1758 (2009)Google Scholar
  135. 135.
    Perry, S.W., Burke, R.M., Brown, E.B.: Two-photon and second harmonic microscopy in clinical and translational cancer research. Annals of Biomedical Engineering 40(2), 277–291 (2012)Google Scholar
  136. 136.
    Murari, K., et al.: Compensation-free, all-fiber-optic, two-photon endomicroscopy at 1.55 μm. Optics Letters 36(7), 1299–1301 (2011)Google Scholar
  137. 137.
    Gibson, A., Hebden, J., Arridge, S.R.: Recent advances in diffuse optical imaging. Physics in Medicine and Biology 50(4), 1–43 (2005)Google Scholar
  138. 138.
    Herranz, M., Ruibal, A.: Optical imaging in breast cancer diagnosis: the next evolution. Journal of Oncology (2012). Article ID 863747Google Scholar
  139. 139.
    Garcia-Uribe, A., et al.: In-vivo characterization of optical properties of pigmented skin lesions including melanoma using oblique incidence diffuse reflectance spectrometry. Journal of Biomedical Optics 16(2), 020501 (2011)Google Scholar
  140. 140.
    Wu, K., et al.: Dynamic real-time microscopy of the urinary tract using confocal laser endomicroscopy. Urology 78(1), 225–231 (2011)Google Scholar
  141. 141.
    König, K., et al.: Clinical two-photon microendoscopy. Microscopy Research and Technique 70(5), 398–402 (2007)Google Scholar
  142. 142.
    Thekkek, N., Richards-Kortum, R.: Optical imaging for cervical cancer detection: solutions for a continuing global problem. Nature Reviews Cancer 8(9), 725–731 (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of MechatronicsGwangju Institute of Science and TechnologyGwangjuSouth Korea
  2. 2.Department of Medical System Engineering & School of MechatronicsGwangju Institute of Science and TechnologyGwangjuSouth Korea

Personalised recommendations