Advertisement

Functional Stem Cell Biomechanics: Application of Biophysical Techniques and Multi-content 3D Image Analysis

  • Shan Sun
  • Amit Paul
  • John Kanagaraj
  • Michael Cho
Chapter
Part of the Biosystems & Biorobotics book series (BIOSYSROB, volume 9)

Abstract

The mechanical properties of the cell - cytoskeleton elasticity, membrane tension, and adhesion strength - play an important role in the regulation of stem cell differentiation. While the cellular mechanical properties are significantly altered during stem cell specification to a particular phenotype, the complexity of events associated with transformation of these precursor cells leaves many questions unanswered about morphological, structural, proteomic, and functional changes in differentiating stem cells. However, control of cell behaviors might be feasible through manipulation of the cellular mechanical properties using external physical stimuli and manipulation of mechanically sensitive signaling molecules. Biomechanical regulation of stem cell differentiation can minimize the number of chemicals and growth factors that would otherwise be required for tissue engineering. Coupled with a thorough understanding of stem cell behavior, both experimentally and computationally, development of more effective approaches is a feasible way to expand stem cells and to regulate their phenotypic commitment. We recently developed a high-content/high-throughput screening algorithm that offers significant improvements in 3D quantitative analysis at the single cell level. A consistent pattern observed in all types of stem cell differentiation indicates the cytoskeleton remodeled significantly before lineage-specific cellular changes occurred. This demonstrates that cellular mechanical transformations are a precursor to stem cell differentiation and to phenotypic functionality.

Keywords

Stem cell Mechanobiology Cellular mechanics 3D image reconstruction Multi content analytics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Addae-Mensah, K.A., Wikswo, J.P.: Measurement techniques for cellular biomechanics in vitro. Exp. Biol. Med. 233, 792–809 (2008)CrossRefGoogle Scholar
  2. Albiges-Rizo, C., Destaing, O., Fourcade, B., Planus, E., Block, M.R.: Actin machinery and mechanosensitivity in invadopodia, podosomes and focal adhesions. J. Cell Sci. 122, 3037–3049 (2009)CrossRefGoogle Scholar
  3. Armstrong, L., Tilgner, K., Saretzki, G., Atkinson, S.P., Stojkovic, M., Moreno, R., Przyborski, S., Lako, M.: Human induced pluripotent stem cell lines show stress defense mechanisms and mitochondrial regulation similar to those of human embryonic stem cells. Stem Cells 28, 661–673 (2010)CrossRefGoogle Scholar
  4. Berridge, M.J., Bootman, M.D., Roderick, H.L.: Calcium signaling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4, 517–529 (2003)CrossRefGoogle Scholar
  5. Berridge, M.J.: Calcium signal transduction and cellular control mechanisms. Biochim. Biophys. Acta 1742, 3–7 (2004)CrossRefGoogle Scholar
  6. Bershadsky, A.D., Ballestrem, C., Carramusa, L., Zilberman, Y., Gilquin, B., Khochbin, S., et al.: Assembly and mechanosensory function of focal adhesions: experiments and models. Eur. J. Cell Biol. 85, 165–173 (2006)CrossRefGoogle Scholar
  7. Burdick, J.A., Vunjak-Novakovic, G.: Review: Engineered microenvironments for controlled stem cell differentiation. Tissue Eng. Part A 2, 205–219 (2009)CrossRefGoogle Scholar
  8. Chakraborty, A., Perales, M.M., Reddy, G.V., Roy-Chowdhury, A.K.: Adaptive geometric tessellation for 3D reconstruction of anisotropically developing cells in multilayer tissues from sparse volumetric microscopy images. PLoS ONE (2013). doi: 10.1371/journal.pone.0067202
  9. Chen, C.S., Ingber, D.E.: Tensegrity and mechanoregulation: from skeleton to cytoskeleton. Osteoarthr. Cartil. 7, 81–94 (1999)CrossRefGoogle Scholar
  10. Chen, C.S., Tan, J., Tien, J.: Mechanotransduction at cell-matrix and cell-cell contacts. Ann. Rev. Biomed. Eng. 6, 275–302 (2004)CrossRefGoogle Scholar
  11. Chen, H., Titushkin, I., Stroscio, M., Cho, M.: Altered membrane dynamics of quantum dot-conjugated integrins during osteogenic differentiation of human bone marrow derived progenitor cells. Biophys. J. 92, 1399–1408 (2007)CrossRefGoogle Scholar
  12. Chen, Z., Gibson, T.B., Robinson, F., Silvestro, L., Pearson, G., Xu, B., et al.: MAP kinases. Chem. Rev. 101, 2449–2476 (2001)CrossRefGoogle Scholar
  13. Cho, M.R., Marler, J.P., Thatte, H.S., Golan, D.E.: Control of calcium entry in human fibroblasts by frequency-dependent electrical stimulation. Frontiers Biosci. 7, 1–8 (2002)CrossRefMATHGoogle Scholar
  14. Cho, M.R.: A review of electrocoupling mechanisms mediating facilitated wound healing. IEEE Trans. Plasma Sci. 30, 1504–1515 (2002). Invited ReviewCrossRefGoogle Scholar
  15. Chrzanowska-Wodnicka, M., Burridge, K.: Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J. Cell Biol. 133, 1403–1415 (1996)CrossRefGoogle Scholar
  16. Collinworth, A.M., Zhang, S., Kraus, W.E., Truskey, G.A.: Apparent elastic modulus and hysteresis of skeletal muscle cells throughout differentiation. Am. J. Physiol. Cell Physiol. 283, C1219–C1227 (2002)CrossRefGoogle Scholar
  17. Costa, K.D., Yin, F.C.: Analysis of indentation: implications for measuring mechanical properties with atomic force microscopy. J. Biomech. Eng. 121, 462–471 (1999)CrossRefGoogle Scholar
  18. Costa, K.D.: Imaging and probing cell mechanical properties with the atomic force microscope. Meth. Mol. Biol. 319, 331–361 (2006)CrossRefGoogle Scholar
  19. Dai, J., Sheetz, M.P., Wan, X., Morris, C.E.: Membrane tension in swelling and shrinking molluscan neurons. J. Neurosci. 18, 6681–6692 (1998)Google Scholar
  20. Darling, E.M., Zauscher, S., Guilak, F.: Viscoelastic properties of zonal articular chondrocytes measured by atomic force microscopy. Osteoarth. Cartil. 14, 571–579 (2006)CrossRefGoogle Scholar
  21. Deng, Z., Sharff, K.A., Tang, N., Song, W., Luo, J., Luo, X., et al.: Regulation of osteogenic differentiation during skeletal development. Front. Biosci. 13, 2001–2021 (2008)CrossRefGoogle Scholar
  22. Dong, C., Skalak, R., Sung, K.L., Schmid-Schönbein, G.W., Chien, S.: Passive deformation analysis of human leukocytes. J. Biomech. Eng. 110, 27–36 (1998)CrossRefGoogle Scholar
  23. Dong, C., Skalak, R., Sung, K.L.: Cytoplasmic rheology of passive neutrophils. Biorheol. 28, 557–567 (1991)Google Scholar
  24. Docheva, D., Popov, C., Mutschler, W., Schieker, M.: Human mesenchymal stem cells in contact with their environment: surface characteristics and the integrin system. J. Cell. Molec. Med. 11, 21–38 (2007)CrossRefGoogle Scholar
  25. Estes, B.T., Gimble, J.M., Guilak, F.: Mechanical signals as regulators of stem cell fate. Curr. Top. Dev. Biol. 60, 91–126 (2004)CrossRefGoogle Scholar
  26. Engler, A.J., Sen, S., Sweeney, H.L., Discher, D.E.: Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006)CrossRefGoogle Scholar
  27. Evans, E., Yeung, A.: Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys. J. 56, 151–160 (1989)CrossRefGoogle Scholar
  28. Even-Ram, S., Artym, V., Yamada, K.M.: Matrix control of stem cell fate. Cell 126, 645–647 (2006)CrossRefGoogle Scholar
  29. Foreman, M.A., Smith, J., Publicover, S.J.: Characterization of serum-induced intracellular Ca2 + oscillations in primary bone marrow stromal cells. J. Cell. Physiol. 206, 664–671 (2006)CrossRefGoogle Scholar
  30. Galli, C., Guizzardi, S., Passeri, G., Macaluso, G.M., Scandroglio, R.: Life on the wire: on tensegrity and force balance in cells. Acta Biomed. 76, 5–12 (2005)Google Scholar
  31. Guilak, F., Jones, W.R., Ting-Beall, H.P., Lee, G.M.: The deformation behavior and mechanical properties of chondrocytes in articular cartilage. Osteoarth. Cartil. 7, 59–70 (1999)CrossRefGoogle Scholar
  32. Guilak, F., Cohen, D.M., Estes, B.T., Gimble, J.M., Liedtke, W., Chen, C.S.: Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5, 17–26 (2009)CrossRefGoogle Scholar
  33. Hochmuth, R.M., Ting-Beall, H.P., Beaty, B.B., Needham, D., Tran-Son-Tay, R.: Viscosity of passive human neutrophils undergoing small deformations. Biophys. J. 64, 1596–1601 (1993)CrossRefGoogle Scholar
  34. Hoffman, B.D., Crocker, J.C.: Cell mechanics: dissecting the physical responses of cells to force. Ann. Rev. Biomed. Eng. 11, 259–288 (2009)CrossRefGoogle Scholar
  35. Hughes, S.C., Fehon, R.G.: Understanding ERM proteins–the awesome power of genetics finally brought to bear. Curr. Opin. Cell Biol. 19, 51–56 (2007)CrossRefGoogle Scholar
  36. Humphrey, J.D.: Stress, strain, and mechanotransduction in cells. J. Biomech. Eng. 123, 638–641 (2001)CrossRefGoogle Scholar
  37. Ingber, D.E.: Tensegrity: the architectural basis of cellular mechanotransduction. Ann. Rev. Physiol. 59, 575–599 (1997)CrossRefGoogle Scholar
  38. Ingber, D.E.: Cellular mechanotransduction: putting all the pieces together again. FASEB J. 20, 811–827 (2006)CrossRefGoogle Scholar
  39. Katsumi, A., Orr, A.W., Tzima, E., Schwartz, M.A.: Integrins in mechanotransduction. J. Biol. Chem. 279, 12001–12004 (2004)CrossRefGoogle Scholar
  40. Kawano, S., Otsu, K., Kuruma, A., Shoji, S., Yanagida, E., Muto, Y., et al.: ATP autocrine/paracrine signaling induces calcium oscillations and NFAT activation in human mesenchymal stem cells. Cell Calcium 39, 313–324 (2006)CrossRefGoogle Scholar
  41. Khatib, L., Golan, D.E., Cho, M.R.: Physiologic electrical stimulation provokes calcium increase mediated by phospholipase C activation in human osteoblasts. FASEB J. (2004). doi: 10.1096/fj.04-1814fje
  42. Kim, T., Seong, J., Ouyang, M., Sun, J., Lu, S., Hong, J.P., et al.: Substrate rigidity regulates Ca2 + oscillation via RhoA pathway in stem cells. J. Cell. Physiol. 218, 285–293 (2009)CrossRefGoogle Scholar
  43. Koay, E.J., Shieh, A.C., Athanasiou, K.A.: Creep indentation of single cells. J. Biomech. Eng. 125, 334–341 (2003)CrossRefGoogle Scholar
  44. Kotani, H., Takaishi, K., Sasaki, T., Takai, Y.: Rho regulates association of both the ERM family and vinculin with the plasma membrane in MDCK cells. Oncogene 14, 1705–1713 (1997)CrossRefGoogle Scholar
  45. Kuznetsova, T.G., Starodubtseva, M.N., Yegorenkov, N.I., Chizhik, S.A., Zhdanov, R.I.: Atomic force microscopy probing of cell elasticity. Micron 38, 824–833 (2007)CrossRefGoogle Scholar
  46. Liao, Z., Feng, S., Popel, A.S., Brownell, W.E., Spector, A.A.: Outer hair cell active force generation in the cochlear environment. J. Acoust. Soc. Am. 122, 2215–2225 (2007)CrossRefGoogle Scholar
  47. Lim, C.T., Zhou, E.H., Quek, S.T.: Mechanical models for living cells – A review. J. Biomech. 39, 195–216 (2006)CrossRefGoogle Scholar
  48. López-Toledano, M.A., Redondo, C., Lobo, M.V.T., Reimers, D., Herranz, A.S., Paíno, C.L., et al.: Tyrosine hydroxylase induction by basic fibroblast growth factor and cyclic AMP analogs in striatal neural stem cells: role of ERK1/ERK2 mitogen-activated protein kinase and protein kinase C. J. Histochem. Cytochem. 52, 1177–1189 (2004)CrossRefGoogle Scholar
  49. Louvet-Vallée, S.: ERM proteins: from cellular architecture to cell signaling. Biol. Cell 92, 305–316 (2000)CrossRefGoogle Scholar
  50. Maffulli, N., Wong, J.: Rupture of the Achilles and patellar tendons. Clin. Sports Med. 22, 761–776 (2003)CrossRefGoogle Scholar
  51. Mahaffy, R.E., Park, S., Gerde, E., Kas, J., Shih, C.K.: Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy. Biophys. J. 86, 1777–1793 (2004)CrossRefGoogle Scholar
  52. Mangeat, P., Roy, C., Martin, M.: ERM proteins in cell adhesion and membrane dynamics. Trends Cell Biol. 9, 187–192 (1999)CrossRefGoogle Scholar
  53. Mather, A.B., Collinworth, A.M., Reichert, W.M., Kraus, W.E., Truskey, G.A.: Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy. J. Biomech. 34, 1545–1553 (2001)CrossRefGoogle Scholar
  54. McBeath, R., Pirone, D.M., Nelson, C., Bhadriraju, K., Chen, C.S.: Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Develop. Cell 6, 483–495 (2004)CrossRefGoogle Scholar
  55. Mackay, D.J., Esch, F., Furthmayr, H., Hall, A.: Rho- and rac-dependent assembly of focal adhesion complexes and actin filaments in permeabilized fibroblasts: an essential role for ezrin/radixin/moesin proteins. J. Cell Biol. 138, 927–938 (1997)CrossRefGoogle Scholar
  56. Metallo, C.M., Mohr, J.C., Detzel, C.J., de Pablo, J.J., Van Wie, B.J., Palecek, S.P.: Engineering the stem cell microenvironment. Biotechnol. Prog. 23, 18–23 (2007)CrossRefGoogle Scholar
  57. Morris, C.E., Homann, U.: Cell surface area regulation and membrane tension. J. Membr. Biol. 179, 79–102 (2001)Google Scholar
  58. Mosaliganti, K.R., Noche, R.R., Xiong, F., Swinburne, I.A., Megason, S.G.: ACME: automated cell morphology extractor for comprehensive reconstruction of cell membranes. Biol, PLoS Compu. (2012). doi: 10.1371/journal.pcbi.1002780 Google Scholar
  59. Neuman, K.C., Block, S.M.: Optical trapping. Rev. Sci. Instrumen. 75, 2787–2809 (2004)CrossRefGoogle Scholar
  60. Ohashi, T., Ishii, Y., Ishikawa, Y., Matsumoto, T., Sato, M.: Experimental and numerical analyses of local mechanical properties measured by atomic force microscopy for sheared endothelial cells. Biomed. Mater. Eng. 12, 319–327 (2002)Google Scholar
  61. Peterman, E.J.G., Gittes, F., Schmidt, C.F.: Laser-induced heating in optical traps. Biophys. J. 84, 1308–1316 (2003)CrossRefGoogle Scholar
  62. Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., et al.: Ezrin interacts with focal adhesion kinase and induces its activation independently of cell-matrix adhesion. J. Biol. Chem. 276, 37686–37691 (2001)CrossRefGoogle Scholar
  63. Radmacher, M.: Measuring the elastic properties of living cells by the atomic force microscope. Meth. Cell Biol. 68, 67–90 (2002)CrossRefGoogle Scholar
  64. Raucher, D., Sheetz, M.P.: Characteristics of a membrane reservoir buffering membrane tension. Biophys. J. 77, 1992–2002 (1999)CrossRefGoogle Scholar
  65. Rehfeldt, F., Engler, A.J., Eckhardt, A., Ahmed, F., Discher, D.E.: Cell responses to the mechanochemical microenvironment- implications for regenerative medicine and drug delivery. Adv. Drug Deliv. Rev. 59, 1329–1339 (2007)CrossRefGoogle Scholar
  66. Rodríguez, J.P., González, M., Ríos, S., Cambiazo, V.: Cytoskeletal organization of human mesenchymal stem cells (MSC) changes during their osteogenic differentiation. J. Cell. Biochem. 93, 721–731 (2004)CrossRefGoogle Scholar
  67. Saha, S., Ji, L., de Pablo, J.J., Palecek, S.P.: Inhibition of human embryonic stem cell differentiation by mechanical strain. J. Cell. Physiol. 206, 126–137 (2006)CrossRefGoogle Scholar
  68. Sarasa-Renedo, A., Chiquet, M.: Mechanical signals regulating extracellular matrix gene expression in fibroblasts. Scand. J. Med. Sci. Sports 15, 223–230 (2005)CrossRefGoogle Scholar
  69. Sato, M., Theret, D.P., Wheeler, L.T., Ohshima, N., Nerem, R.M.: Application of the micropipette technique to the measurement of cultured porcine aortic endothelial cell viscoelastic properties. J. Biomech. Eng. 112, 263–268 (1990)CrossRefGoogle Scholar
  70. Sheetz, M.P.: Laser Tweezers in Cell Biology. Academic Press (1998)Google Scholar
  71. Sheetz, M.P., Sable, J.E., Döbereiner, H.: Continuous membrane-cytoskeleton adhesion requires continuous accommodation to lipid and cytoskeleton dynamics. Ann. Rev. Biophys. Biomol. Struct. 35, 417–434 (2006)CrossRefGoogle Scholar
  72. Shieh, A.C., Athanasiou, K.A.: Biomechanics of single chondrocytes and osteoarthritis. Crit. Rev. Biomed. Eng. 30, 307–343 (2002)CrossRefGoogle Scholar
  73. Shieh, A.C., Athanasiou, K.A.: Principles of cell mechanics for cartilage tissue engineering. Ann. Biomed. Eng. 31, 1–11 (2003)CrossRefGoogle Scholar
  74. Silver, F.H., Siperko, L.M.: Mechanosensing and mechanochemical transduction: how is mechanical energy sensed and converted into chemical energy in an extracellular matrix? Crit. Rev. Biomed. Eng. 31, 255–331 (2003)CrossRefGoogle Scholar
  75. Simonetti, D.W., Craig, S., Marshak, D.R.: Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147 (1999)CrossRefGoogle Scholar
  76. Stamenović, D., Ingber, D.E.: Models of cytoskeletal mechanics of adherent cells. Biomech. Model. Mechanobiol. 1, 95–108 (2002)CrossRefGoogle Scholar
  77. Sun, S., Liu, Y., Lipsky, S., Cho, M.: Physical manipulation of calcium oscillations facilitates osteodifferentiation of human mesenchymal stem cells. FASEB J. 21, 1472–1480 (2007)CrossRefGoogle Scholar
  78. Sun, S., Song, Z.Y., Cotler, S.J., Cho, M.: Biomechanics and functionality of hepatocytes in liver cirrhosis. J. Biomech. 47, 2205–2210 (2013)CrossRefGoogle Scholar
  79. Sun, S., Wong, S.W., Mak, A.F.T., Cho, M.: Impact of oxidative stress on cellular biomechanics and Rho signaling in C2C12 myoblasts. J. Biomech. 47, 3650–3656 (2014)CrossRefGoogle Scholar
  80. Takai, E., Costa, K.D., Shaheen, A., Hung, C.T., Guo, X.E.: Osteoblast elastic modulus measured by atomic force microscopy is substrate dependent. Ann. Biomed. Eng. 33, 963–971 (2005)CrossRefGoogle Scholar
  81. Theret, D.P., Levesque, M.J., Sato, M., Nerem, R.M., Wheeler, L.T.: The application of a homogeneous half-space model in the analysis of endothelial cell micropipette measurements. J. Biomech. Eng. 110, 190–199 (1988)CrossRefGoogle Scholar
  82. Thoumine, O., Cardoso, O., Meister, J.J.: Changes in the mechanical properties of fibroblasts during spreading: a micromanipulation study. Euro. Biophys. J. Biophys. Lett. 28, 222–234 (1999)CrossRefGoogle Scholar
  83. Titushkin, I., Rao, V., Cho, M.R.: Mode- and cell-type dependent calcium responses induced by electrical stimulus. IEEE Trans. Plasma Sci. 32, 1614–1619 (2004). Invited ReviewCrossRefGoogle Scholar
  84. Titushkin, I., Cho, M.: Distinct membrane mechanical properties of human mesenchymal stem cells determined using laser optical tweezers. Biophys. J. 90, 2582–2591 (2006)CrossRefGoogle Scholar
  85. Titushkin, I., Cho, M.: Modulation of cellular mechanics during osteogenic differentiation of human mesenchymal stem cells. Biophys. J. 93, 3693–3702 (2007)CrossRefGoogle Scholar
  86. Titushkin, I., Cho, M.R.: Controlling cellular biomechanics of human mesenchymal stem cells. Conf. Proc. IEEE Eng. Med. Biol Soc. 1, 2090–2093 (2009a)Google Scholar
  87. Titushkin, I., Cho, M.: Regulation of cell cytoskeleton and membrane mechanics by electric field: Role of linker proteins. Biophys J. 96, 717–728 (2009b)Google Scholar
  88. Titushkin, I., Rao, V.S., Pickard, W.F., Moros, E.G., Shafirstein, G., Cho, M.R.: Altered calcium dynamics mediates P19-derived neuron-like cell responses to millimeter-wave radiation. 2011. Radiat. Res. 172, 725–736 (2009c)Google Scholar
  89. Titushkin, I., Shin, J., Sun, S., Cho, M.: Physicochemical control of adult stem cell differentiation: shedding light on potential molecular mechanisms. J. Biomed. Biotechnol. (2010). doi: 10.1155/2010/743476
  90. Titushkin, I., Cho, M.: Altered osteogenic commitment of human mesenchymal stem cells by ERM protein-dependent modulation of cellular biomechanics. J. Biomech. 44, 2692–2698 (2011)CrossRefGoogle Scholar
  91. Titushkin, I., Sun, S., Paul, A., Cho, M.: Control of adipogenesis by Ezrin, Radixin and Moesin-dependent biomechanics remodeling. J. Biomech. 46, 521–526 (2013)CrossRefGoogle Scholar
  92. Tonge, P.D., Corso, A.J., Monetti, C., Hussein, S.M., Puri, M.C., Michael, I.P., et al.: Divergent reprogramming routes lead to alternative stem-cell states. Nature 516, 192–197 (2014)CrossRefGoogle Scholar
  93. Trickey, W.R., Vail, T.P., Guilak, F.: The role of the cytoskeleton in the viscoelastic properties of human articular chondrocytes. J. Orthop. Res. 22, 131–139 (2004)CrossRefGoogle Scholar
  94. Tsai, M.A., Frank, R.S., Waugh, R.E.: Passive mechanical behavior of human neutrophils: power-law fluid. Biophys. J. 65, 2078–2088 (1993)CrossRefGoogle Scholar
  95. Van Vliet, K.: The biomechanics toolbox: experimental approaches for living cells and biomolecules. Acta Mater. 51, 5881–5905 (2003)CrossRefGoogle Scholar
  96. Wang, J.H., Thampatty, B.P.: An introductory review of cell mechanobiology. Biomech. Model. Mechanobiol. 5, 1–16 (2006)CrossRefGoogle Scholar
  97. Wang, N., Tolić-Nørrelykke, I.M., Chen, J., Mijailovich, S.M., Butler, J.P., Fredberg, J.J., et al.: Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. Am. J. Physiol. Cell Physiol. 282, C606–C616 (2002)CrossRefGoogle Scholar
  98. Wang, N., Tytell, J.D., Ingber, D.E.: Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat. Rev. Mol. Cell Biol. 10, 75–82 (2009)CrossRefGoogle Scholar
  99. Wozniak, M.A., Modzelewska, K., Kwong, L., Keely, P.J.: Focal adhesion regulation of cell behavior. Biochim. Biophys. Acta 1692, 103–119 (2004)CrossRefGoogle Scholar
  100. Wright, W.H., Sonek, G.J., Berns, M.W.: Parametric study of the forces on microspheres held by optical tweezers. Appl. Opt. 33, 1735–1748 (1994)CrossRefGoogle Scholar
  101. Wu, Z., Wong, K., Glogauer, M., Ellen, R.P., McCulloch, C.A.: Regulation of stretch-activated intracellular calcium transients by actin filaments. Biochem. Biophys. Res. Commun. 261, 419–425 (1999)CrossRefGoogle Scholar
  102. Yourek, G., Hussain, M.A., Mao, J.J.: Cytoskeletal changes of mesenchymal stem cells during differentiation. Amer. Soc. Artificial Internal Organs J. 53, 219–228 (2007)CrossRefGoogle Scholar
  103. Zhou, D., He, Q.S., Wang, C., Zhang, J., Wong-Staal, F.: RNA interference and potential applications. Curr. Topics Med. Chem. 6, 901–911 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Shan Sun
    • 1
  • Amit Paul
    • 1
  • John Kanagaraj
    • 1
  • Michael Cho
    • 1
  1. 1.Department of BioengineeringUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations