Organ-on-a-Chip Platforms for Drug Screening and Tissue Engineering

Part of the Biosystems & Biorobotics book series (BIOSYSROB, volume 9)


Developments in micro- and nanofluidic technologies have led to new kinds of cell culture and screening systems that are collectively termed organ-on-a-chip systems. Organ-on-a-chip systems are in vitro microfabricated devices that mimic dynamic interactions of in vivo microenvironments. In addition to existing two-dimensional and three-dimensional cell tissues, organ-on-a-chip systems can mimic the biomechanical and biochemical microenvironment of in vivo tissues as well as the interaction effect of the microenvironment on cell and tissue functions. Due to these features, organ-on-a-chip systems have become excellent platforms for drug screening and delivery test and tissue engineering. In this review, specific examples of various types of organ-on-a-chip devices and their applications in tissue engineering and drug delivery test are discussed. The ready feasibility and performance of current state-of-the-art organ-on-a-chip systems, including lung-on-a-chip, heart-on-a-chip, liver-on-a-chip, vessel-on-a-chip, and tumor-on-a-chip are also covered in this chapter. The limitations of conventional systems, basic fabrication process of organ-on-a-chip devices, and future prospective of organ-on-a-chip are discussed.


Organ-on-a-chip Microfluidics system Drug screening and delivery Cellular microenvironment Tissue engineering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tonkens, R.: An overview of the drug development process. Physician Exec. 31, 48–52 (2005)Google Scholar
  2. 2.
    Djulbegovic, B., Hozo, I., Ioannidis, J.P.A.: Improving the drug development process: more not less randomized trials. JAMA 311, 355–356 (2014). doi: 10.1001/jama.2013.283742 CrossRefGoogle Scholar
  3. 3.
    Bhise, N.S., Shmueli, R.B., Sunshine, J.C., Tzeng, S.Y., Green, J.J.: Drug delivery strategies for therapeutic angiogenesis and antiangiogenesis. Expert Opin Drug Deliv. 8, 485–504 (2011). doi: 10.1517/17425247.2011.558082 CrossRefGoogle Scholar
  4. 4.
    Baharvand, H., Hashemi, S.M., Kazemi Ashtiani, S., Farrokhi, A.: Differentiation of human embryonic stem cells into hepatocytes in 2D and 3D culture systems in vitro. Int. J. Dev. Biol. 50, 645–652 (2006). doi: 10.1387/ijdb.052072hb CrossRefGoogle Scholar
  5. 5.
    Tibbitt, M.W., Anseth, K.S.: Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 103, 655–663 (2009). doi: 10.1002/bit.22361 CrossRefGoogle Scholar
  6. 6.
    Bhise, N.S., Gray, R.S., Sunshine, J.C., Htet, S., Ewald, A.J., Green, J.J.: The relationship between terminal functionalization and molecular weight of a gene delivery polymer and transfection efficacy in mammary epithelial 2-D cultures and 3-D organotypic cultures. Biomaterials 31, 8088–8096 (2010). doi: 10.1016/j.biomaterials.2010.07.023 CrossRefGoogle Scholar
  7. 7.
    Tung, Y.-C., Hsiao, A.Y., Allen, S.G., Torisawa, Y., Ho, M., Takayama, S.: High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst 136, 473–478 (2011). doi: 10.1039/c0an00609b CrossRefGoogle Scholar
  8. 8.
    Wilkening, S., Stahl, F., Bader, A.: Comparison of primary human hepatocytes and hepatoma cell line HepG2 with regard to their biotransformation properties. Drug Metab. Dispos. 31, 1035–1042 (2003). doi: 10.1124/dmd.31.8.1035 CrossRefGoogle Scholar
  9. 9.
    Karp, J.M., Yeh, J., Eng, G., Fukuda, J., Blumling, J., Suh, K.-Y., Cheng, J., Mahdavi, A., Borenstein, J., Langer, R., Khademhosseini, A.: Controlling size, shape and homogeneity of embryoid bodies using poly(ethylene glycol) microwells. Lab. Chip. 7, 786–794 (2007). doi: 10.1039/b705085m CrossRefGoogle Scholar
  10. 10.
    Patel, N.G., Zhang, G.: Stacked stem cell sheets enhance cell-matrix interactions. Organogenesis 10, 170–176 (2014). doi: 10.4161/org.28990 CrossRefGoogle Scholar
  11. 11.
    Karp, J.M., Yeh, J., Eng, G., Fukuda, J., Blumling, J., Suh, K.-Y., Cheng, J., Mahdavi, A., Borenstein, J., Langer, R., Khademhosseini, A.: Controlling size, shape and homogeneity of embryoid bodies using poly(ethylene glycol) microwells. Lab. Chip. 7, 786–794 (2007). doi: 10.1039/b705085m CrossRefGoogle Scholar
  12. 12.
    Papenburg, B.J., Liu, J., Higuera, G.A., Barradas, A.M.C., de Boer, J., van Blitterswijk, C.A., Wessling, M., Stamatialis, D.: Development and analysis of multi-layer scaffolds for tissue engineering. Biomaterials 30, 6228–6239 (2009). doi: 10.1016/j.biomaterials.2009.07.057 CrossRefGoogle Scholar
  13. 13.
    Patel, N.G., Zhang, G.: Stacked stem cell sheets enhance cell-matrix interactions. Organogenesis 10, 170–176 (2014). doi: 10.4161/org.28990 CrossRefGoogle Scholar
  14. 14.
    Douville, N.J., Zamankhan, P., Tung, Y.-C., Li, R., Vaughan, B.L., Tai, C.-F., White, J., Christensen, P.J., Grotberg, J.B., Takayama, S.: Combination of fluid and solid mechanical stresses contribute to cell death and detachment in a microfluidic alveolar model. Lab. Chip. 11, 609–619 (2011). doi: 10.1039/c0lc00251h CrossRefGoogle Scholar
  15. 15.
    Huh, D., Matthews, B.D., Mammoto, A., Montoya-Zavala, M., Hsin, H.Y., Ingber, D.E.: Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010). doi: 10.1126/science.1188302 CrossRefGoogle Scholar
  16. 16.
    Mahto, S.K., Yoon, T.H., Rhee, S.W.: A new perspective on in vitro assessment method for evaluating quantum dot toxicity by using microfluidics technology. Biomicrofluidics 4, 1–9 (2010). doi: 10.1063/1.3486610 CrossRefGoogle Scholar
  17. 17.
    Cho, E.C., Zhang, Q., Xia, Y.: The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nat. Nanotechnol. 6, 385–391 (2011). doi: 10.1038/nnano.2011.58 CrossRefGoogle Scholar
  18. 18.
    Stirland, D.L., Nichols, J.W., Miura, S., Bae, Y.H.: Mind the gap: a survey of how cancer drug carriers are susceptible to the gap between research and practice. J. Control Release 172, 1045–1064 (2013). doi: 10.1016/j.jconrel.2013.09.026 CrossRefGoogle Scholar
  19. 19.
    Lammers, T., Kiessling, F., Hennink, W.E., Storm, G.: Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J. Control Release 161, 175–187 (2012). doi: 10.1016/j.jconrel.2011.09.063 CrossRefGoogle Scholar
  20. 20.
    Bhise, N.S., Ribas, J., Manoharan, V., Zhang, Y.S., Polini, A., Massa, S., Dokmeci, M.R., Khademhosseini, A.: Organ-on-a-chip platforms for studying drug delivery systems. J. Control Release 190, 82–93 (2014). doi: 10.1016/j.jconrel.2014.05.004 CrossRefGoogle Scholar
  21. 21.
    U.S.Food and Drug Administration: Guidance for industry safety testing of drug guidance for industry safety testing of drug metabolites (2008)Google Scholar
  22. 22.
    Fröde, T.S., Medeiros, Y.S.: Animal models to test drugs with potential antidiabetic activity. J. Ethnopharmacol. 115, 173–183 (2008). doi: 10.1016/j.jep.2007.10.038 CrossRefGoogle Scholar
  23. 23.
    Moraes, C., Mehta, G., Lesher-Perez, S.C., Takayama, S.: Organs-on-a-chip: a focus on compartmentalized microdevices. Ann. Biomed Eng. 40, 1211–1227 (2012). doi: 10.1007/s10439-011-0455-6 CrossRefGoogle Scholar
  24. 24.
    Zimmerlin, L., Donnenberg, A.D., Rubin, J.P., Basse, P., Landreneau, R.J., Donnenberg, V.S.: Regenerative therapy and cancer: in vitro and in vivo studies of the interaction between adipose-derived stem cells and breast cancer cells from clinical isolates. Tissue Eng. Part A 17, 93–106 (2011). doi: 10.1089/ten.TEA.2010.0248 CrossRefGoogle Scholar
  25. 25.
    Duffy, D.C., McDonald, J.C., Schueller, O.J., Whitesides, G.M.: Rapid prototyping of microfluidic systems in Poly(dimethylsiloxane). Anal. Chem. 70, 4974–4984 (1998). doi: 10.1021/ac980656z CrossRefGoogle Scholar
  26. 26.
    Leclerc, E., Furukawa, K.S., Miyata, F., Sakai, Y., Ushida, T., Fujii, T.: Fabrication of microstructures in photosensitive biodegradable polymers for tissue engineering applications. Biomaterials 25, 4683–4690 (2004). doi: 10.1016/j.biomaterials.2003.10.060 CrossRefGoogle Scholar
  27. 27.
    Huh, D., Torisawa, Y., Hamilton, G.A., Kim, H.J., Ingber, D.E.: Microengineered physiological biomimicry: organs-on-chips. Lab. Chip. 12, 2156–2164 (2012). doi: 10.1039/c2lc40089h CrossRefGoogle Scholar
  28. 28.
    Kwak, B., Ozcelikkale, A., Shin, C.S., Park, K., Han, B.: Simulation of complex transport of nanoparticles around a tumor using tumor-microenvironment-on-chip. J. Control Release 194, 157–167 (2014). doi: 10.1016/j.jconrel.2014.08.027 CrossRefGoogle Scholar
  29. 29.
    Lee, P.J., Hung, P.J., Lee, L.P.: An artificial liver sinusoid with a microfluidic endothelial-like barrier for primary hepatocyte culture. Biotechnol. Bioeng. 97, 1340–1346 (2007). doi: 10.1002/bit.21360 CrossRefGoogle Scholar
  30. 30.
    Jang, K.-J., Mehr, A.P., Hamilton, G.A., McPartlin, L.A., Chung, S., Suh, K.-Y., Ingber, D.E.: Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr. Biol. (Camb) 5, 1119–1129 (2013). doi: 10.1039/c3ib40049b CrossRefGoogle Scholar
  31. 31.
    Huh, D., Hamilton, G.A., Ingber, D.E.: From 3D cell culture to organs-on-chips. Trends Cell Biol. 21, 745–754 (2011). doi: 10.1016/j.tcb.2011.09.005 CrossRefGoogle Scholar
  32. 32.
    Ghaemmaghami, A.M., Hancock, M.J., Harrington, H., Kaji, H., Khademhosseini, A.: Biomimetic tissues on a chip for drug discovery. Drug Discov. Today 17, 173–181 (2012). doi: 10.1016/j.drudis.2011.10.029 CrossRefGoogle Scholar
  33. 33.
    Jiang, B., Zheng, W., Zhang, W., Jiang, X.: Organs on microfluidic chips: A mini review. Sci. China Chem. 57, 356–364 (2013). doi: 10.1007/s11426-013-4971-0 CrossRefGoogle Scholar
  34. 34.
    Therriault, D., White, S.R., Lewis, J.A.: Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nat. Mater 2, 265–271 (2003). doi: 10.1038/nmat863 CrossRefGoogle Scholar
  35. 35.
    Bernard, A., Renault, J.P., Michel, B., Bosshard, H.R., Delamarche, E.: Microcontact printing of proteins. Adv. Mater. 12, 1067–1070 (2000). doi: 10.1002/1521-4095(200007)12:14<1067:Aid-Adma1067>3.0.Co;2-M CrossRefGoogle Scholar
  36. 36.
    Lee, H., Chung, M., Jeon, N.L.: Microvasculature: An essential component for organ-on-chip systems. MRS Bull 39, 51–59 (2014). doi: 10.1557/mrs.2013.286 CrossRefGoogle Scholar
  37. 37.
    Gates, B.D., Xu, Q., Stewart, M., Ryan, D., Willson, C.G., Whitesides, G.M.: New approaches to nanofabrication: Molding, printing, and other techniques. Chem. Rev. 105, 1171–1196 (2005). doi: 10.1021/cr030076o CrossRefGoogle Scholar
  38. 38.
    Rolland, J.P., Van Dam, R.M., Schorzman, D.A., Quake, S.R., DeSimone, J.M.: Solvent-resistant photocurable “Liquid Teflon” for microfluidic device fabrication. J. Am. Chem. Soc. 126, 2322–2323 (2004). doi: 10.1021/ja031657y CrossRefGoogle Scholar
  39. 39.
    Rolland, J.P., Hagberg, E.C., Denison, G.M., Carter, K.R., De Simone, J.M.: High-resolution soft lithography: Enabling materials for nanotechnologies. Angew. Chemie. – Int. Ed. 43, 5796–5799 (2004). doi: 10.1002/anie.200461122 CrossRefGoogle Scholar
  40. 40.
    Berthier, E., Young, E.W.K., Beebe, D.: Engineers are from PDMS-land, Biologists are from Polystyrenia. Lab. Chip. 12, 1224–1237 (2012). doi: 10.1039/c2lc20982a CrossRefGoogle Scholar
  41. 41.
    Bhatia, S.N., Ingber, D.E.: Microfluidic organs-on-chips. Nat. Biotechnol. 32, 760–772 (2014). doi: 10.1038/nbt.2989 CrossRefGoogle Scholar
  42. 42.
    Prentice-Mott, H.V., Chang, C.-H., Mahadevan, L., Mitchison, T.J., Irimia, D., Shah, J.V.: Biased migration of confined neutrophil-like cells in asymmetric hydraulic environments. Proc. Natl. Acad. Sci. USA 110, 21006–21011 (2013). doi: 10.1073/pnas.1317441110 CrossRefGoogle Scholar
  43. 43.
    Radisic, M., Deen, W., Langer, R., Vunjak-Novakovic, G.: Mathematical model of oxygen distribution in engineered cardiac tissue with parallel channel array perfused with culture medium containing oxygen carriers. Am. J. Physiol. Heart Circ. Physiol. 288, H1278–H1289 (2005). doi: 10.1152/ajpheart.00787.2004 CrossRefGoogle Scholar
  44. 44.
    Cimetta, E., Cannizzaro, C., James, R., Biechele, T., Moon, R.T., Elvassore, N., Vunjak-Novakovic, G.: Microfluidic device generating stable concentration gradients for long term cell culture: application to Wnt3a regulation of β-catenin signaling. Lab. Chip. 10, 3277–3283 (2010). doi: 10.1039/c0lc00033g CrossRefGoogle Scholar
  45. 45.
    Zhao, L., Wang, Z., Fan, S., Meng, Q., Li, B., Shao, S., Wang, Q.: Chemotherapy resistance research of lung cancer based on micro-fluidic chip system with flow medium. Biomed. Microdevices 12, 325–332 (2010). doi: 10.1007/s10544-009-9388-3 CrossRefGoogle Scholar
  46. 46.
    Huang, C.-W., Cheng, J.-Y., Yen, M.-H., Young, T.-H.: Electrotaxis of lung cancer cells in a multiple-electric-field chip. Biosens Bioelectron 24, 3510–3516 (2009). doi: 10.1016/j.bios.2009.05.001 CrossRefGoogle Scholar
  47. 47.
    Xu, Z., Gao, Y., Hao, Y., Li, E., Wang, Y., Zhang, J., Wang, W., Gao, Z., Wang, Q.: Application of a microfluidic chip-based 3D co-culture to test drug sensitivity for individualized treatment of lung cancer. Biomaterials 34, 4109–4117 (2013). doi: 10.1016/j.biomaterials.2013.02.045 CrossRefGoogle Scholar
  48. 48.
    Hou, H.-S., Tsai, H.-F., Chiu, H.-T., Cheng, J.-Y.: Simultaneous chemical and electrical stimulation on lung cancer cells using a multichannel-dual-electric-field chip. Biomicrofluidics 8, 052007 (2014). doi: 10.1063/1.4896296 CrossRefGoogle Scholar
  49. 49.
    Huang, T., Jia, C.-P., Jun-Yang, Sun W.-J., Wang, W.-T., Zhang, H.-L., Cong, H., Jing, F.-X., Mao, H.-J., Jin, Q.-H., Zhang, Z., Chen, Y.-J., Li, G., Mao, G.-X., Zhao, J.-L.: Highly sensitive enumeration of circulating tumor cells in lung cancer patients using a size-based filtration microfluidic chip. Biosens Bioelectron 51, 213–218 (2014). doi: 10.1016/j.bios.2013.07.044 CrossRefGoogle Scholar
  50. 50.
    Long, C., Finch, C., Esch, M., Anderson, W., Shuler, M., Hickman, J.: Design optimization of liquid-phase flow patterns for microfabricated lung on a chip. Ann. Biomed. Eng. 40, 1255–1267 (2012). doi: 10.1007/s10439-012-0513-8 CrossRefGoogle Scholar
  51. 51.
    Shin, S.R., Jung, S.M., Zalabany, M., Kim, K., Zorlutuna, P., Kim, S.B., Nikkhah, M., Khabiry, M., Azize, M., Kong, J., Wan, K.T., Palacios, T., Dokmeci, M.R., Bae, H., Tang, X., Khademhosseini, A.: Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano 7, 2369–2380 (2013). doi: 10.1021/nn305559j CrossRefGoogle Scholar
  52. 52.
    Grosberg, A., Alford, P.W., McCain, M.L., Parker, K.K.: Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip. Lab. Chip. 11, 4165–4173 (2011). doi: 10.1039/c1lc20557a CrossRefGoogle Scholar
  53. 53.
    Chiu, L.L.Y., Montgomery, M., Liang, Y., Liu, H., Radisic, M.: Perfusable branching microvessel bed for vascularization of engineered tissues. Proc. Natl. Acad. Sci. USA 109, E3414–E3423 (2012). doi: 10.1073/pnas.1210580109 CrossRefGoogle Scholar
  54. 54.
    Werdich, A.A., Lima, E.A., Ivanov, B., Ges, I., Anderson, M.E., Wikswo, J.P., Baudenbacher, F.J.: A microfluidic device to confine a single cardiac myocyte in a sub-nanoliter volume on planar microelectrodes for extracellular potential recordings. Lab. Chip. 4, 357–362 (2004). doi: 10.1039/b315648f CrossRefGoogle Scholar
  55. 55.
    Cheng, W., Klauke, N., Sedgwick, H., Smith, G.L., Cooper, J.M.: Metabolic monitoring of the electrically stimulated single heart cell within a microfluidic platform. Lab. Chip. 6, 1424–1431 (2006). doi: 10.1039/b608202e CrossRefGoogle Scholar
  56. 56.
    Ohashi, K., Yokoyama, T., Yamato, M., Kuge, H., Kanehiro, H., Tsutsumi, M., Amanuma, T., Iwata, H., Yang, J., Okano, T., Nakajima, Y.: Engineering functional two- and three-dimensional liver systems in vivo using hepatic tissue sheets. Nat. Med. 13, 880–885 (2007). doi: 10.1038/nm1576 CrossRefGoogle Scholar
  57. 57.
    Lee, S.-A., No, D.Y., Kang, E., Ju, J., Kim, D.-S., Lee, S.-H.: Spheroid-based three-dimensional liver-on-a-chip to investigate hepatocyte-hepatic stellate cell interactions and flow effects. Lab. Chip. 13, 3529–3537 (2013). doi: 10.1039/c3lc50197c CrossRefGoogle Scholar
  58. 58.
    Domansky, K., Inman, W., Serdy, J., Dash, A., Lim, M.H.M., Griffith, L.G.: Perfused multiwell plate for 3D liver tissue engineering. Lab. Chip. 10, 51–58 (2010). doi: 10.1039/b913221j CrossRefGoogle Scholar
  59. 59.
    Toh, Y.-C., Lim, T.C., Tai, D., Xiao, G., van Noort, D., Yu, H.: A microfluidic 3D hepatocyte chip for drug toxicity testing. Lab. Chip. 9, 2026–2035 (2009). doi: 10.1039/b900912d CrossRefGoogle Scholar
  60. 60.
    Toh, Y.-C., Zhang, C., Zhang, J., Khong, Y.M., Chang, S., Samper, V.D., van Noort, D., Hutmacher, D.W., Yu, H.: A novel 3D mammalian cell perfusion-culture system in microfluidic channels. Lab. Chip. 7, 302–309 (2007). doi: 10.1039/b614872g CrossRefGoogle Scholar
  61. 61.
    Goral, V.N., Hsieh, Y.-C., Petzold, O.N., Clark, J.S., Yuen, P.K., Faris, R.A.: Perfusion-based microfluidic device for three-dimensional dynamic primary human hepatocyte cell culture in the absence of biological or synthetic matrices or coagulants. Lab. Chip. 10, 3380–3386 (2010). doi: 10.1039/c0lc00135j CrossRefGoogle Scholar
  62. 62.
    Lee, J., Kim, S.H., Kim, Y.C., Choi, I., Sung, J.H.: Fabrication and characterization of microfluidic liver-on-a-chip using microsomal enzymes. Enzyme. Microb. Technol. 53, 159–164 (2013). doi: 10.1016/j.enzmictec.2013.02.015 CrossRefGoogle Scholar
  63. 63.
    Srigunapalan, S., Lam, C., Wheeler, A.R., Simmons, C.A.: A microfluidic membrane device to mimic critical components of the vascular microenvironment. Biomicrofluidics 5, 13409 (2011). doi: 10.1063/1.3530598 CrossRefGoogle Scholar
  64. 64.
    Zheng, W., Jiang, B., Wang, D., Zhang, W., Wang, Z., Jiang, X.: A microfluidic flow-stretch chip for investigating blood vessel biomechanics. Lab. Chip. 12, 3441–3450 (2012). doi: 10.1039/c2lc40173h CrossRefGoogle Scholar
  65. 65.
    Yeon, J.H., Ryu, H.R., Chung, M., Hu, Q.P., Jeon, N.L.: In vitro formation and characterization of a perfusable three-dimensional tubular capillary network in microfluidic devices. Lab. Chip. 12, 2815 (2012). doi: 10.1039/c2lc40131b CrossRefGoogle Scholar
  66. 66.
    Kim, S., Lee, H., Chung, M., Jeon, N.L.: Engineering of functional, perfusable 3D microvascular networks on a chip. Lab. Chip. 13, 1489–1500 (2013). doi: 10.1039/c3lc41320a CrossRefGoogle Scholar
  67. 67.
    Kusunose, J., Zhang, H., Gagnon, M.K.J., Pan, T., Simon, S.I., Ferrara, K.W.: Microfluidic system for facilitated quantification of nanoparticle accumulation to cells under laminar flow. Ann. Biomed. Eng. 41, 89–99 (2013). doi: 10.1007/s10439-012-0634-0 CrossRefGoogle Scholar
  68. 68.
    Korin, N., Kanapathipillai, M., Matthews, B.D., Crescente, M., Brill, A., Mammoto, T., Ghosh, K., Jurek, S., Bencherif, S.A., Bhatta, D., Coskun, A.U., Feldman, C.L., Wagner, D.D., Ingber, D.E.: Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels. Science 337, 738–742 (2012). doi: 10.1126/science.1217815 CrossRefGoogle Scholar
  69. 69.
    Kim, D., Finkenstaedt-Quinn, S., Hurley, K.R., Buchman, J.T., Haynes, C.L.: On-chip evaluation of platelet adhesion and aggregation upon exposure to mesoporous silica nanoparticles. Analyst 139, 906–913 (2014). doi: 10.1039/c3an01679j CrossRefGoogle Scholar
  70. 70.
    Rosano, J.M., Tousi, N., Scott, R.C., Krynska, B., Rizzo, V., Prabhakarpandian, B., Pant, K., Sundaram, S., Kiani, M.F.: A physiologically realistic in vitro model of microvascular networks. Biomed. Microdevices 11, 1051–1057 (2009). doi: 10.1007/s10544-009-9322-8 CrossRefGoogle Scholar
  71. 71.
    Namdee, K., Thompson, A.J., Charoenphol, P., Eniola-Adefeso, O.: Margination propensity of vascular-targeted spheres from blood flow in a microfluidic model of human microvessels. Langmuir 29, 2530–2535 (2013). doi: 10.1021/la304746p CrossRefGoogle Scholar
  72. 72.
    Samuel, S.P., Jain, N., O’Dowd, F., Paul, T., Kashanin, D., Gerard, V.A., Gun’ko, Y.K., Prina-Mello, A., Volkov, Y.: Multifactorial determinants that govern nanoparticle uptake by human endothelial cells under flow. Int. J. Nanomedicine 7, 2943–2956 (2012). doi: 10.2147/IJN.S30624 Google Scholar
  73. 73.
    Lamberti, G., Tang, Y., Prabhakarpandian, B., Wang, Y., Pant, K., Kiani, M.F., Wang, B.: Adhesive interaction of functionalized particles and endothelium in idealized microvascular networks. Microvasc. Res. 89, 107–114 (2013). doi: 10.1016/j.mvr.2013.03.007 CrossRefGoogle Scholar
  74. 74.
    Tesfamariam, B., DeFelice, A.F.: Endothelial injury in the initiation and progression of vascular disorders. Vascul. Pharmacol. 46, 229–237 (2007). doi: 10.1016/j.vph.2006.11.005 CrossRefGoogle Scholar
  75. 75.
    Li, Y.-S.J., Haga, J.H., Chien, S.: Molecular basis of the effects of shear stress on vascular endothelial cells. J. Biomech. 38, 1949–1971 (2005). doi: 10.1016/j.jbiomech.2004.09.030 CrossRefGoogle Scholar
  76. 76.
    Zervantonakis, I.K., Kothapalli, C.R., Chung, S., Sudo, R., Kamm, R.D.: Microfluidic devices for studying heterotypic cell-cell interactions and tissue specimen cultures under controlled microenvironments. Biomicrofluidics 5, 13406 (2011). doi: 10.1063/1.3553237 CrossRefGoogle Scholar
  77. 77.
    Hyun, K.-A., Lee, T.Y., Jung, H.-I.: Negative enrichment of circulating tumor cells using a geometrically activated surface interaction chip. Anal. Chem. 85, 4439–4445 (2013). doi: 10.1021/ac3037766 CrossRefGoogle Scholar
  78. 78.
    Li, P., Stratton, Z.S., Dao, M., Ritz, J., Huang, T.J.: Probing circulating tumor cells in microfluidics. Lab. Chip. 13, 602–609 (2013). doi: 10.1039/c2lc90148j CrossRefGoogle Scholar
  79. 79.
    Yamamura, S., Yatsushiro, S., Abe, K., Baba, Y., Kataoka, M.: Development of a cell microarray chip for detection of circulating tumor cells. J. Phys. Conf. Ser. 352, 012041 (2012). doi: 10.1088/1742-6596/352/1/012041 CrossRefGoogle Scholar
  80. 80.
    Alshareef, M., Metrakos, N., Juarez Perez, E., Azer, F., Yang, F., Yang, X., Wang, G.: Separation of tumor cells with dielectrophoresis-based microfluidic chip. Biomicrofluidics 7, 11803 (2013). doi: 10.1063/1.4774312 CrossRefGoogle Scholar
  81. 81.
    Sun, D., Lu, J., Chen, Z., Yu, Y., Li, Y.: A novel three-dimensional microfluidic platform for on chip multicellular tumor spheroid formation and culture. Microfluid Nanofluidics 17, 831–842 (2014). doi: 10.1007/s10404-014-1373-3 CrossRefGoogle Scholar
  82. 82.
    Elliott, N.T., Yuan, F.: A microfluidic system for investigation of extravascular transport and cellular uptake of drugs in tumors. Biotechnol. Bioeng. 109, 1326–1335 (2012). doi: 10.1002/bit.24397 CrossRefGoogle Scholar
  83. 83.
    Tan, J., Shah, S., Thomas, A., Ou-Yang, H.D., Liu, Y.: The influence of size, shape and vessel geometry on nanoparticle distribution. Microfluid Nanofluidics 14, 77–87 (2013). doi: 10.1007/s10404-012-1024-5 CrossRefGoogle Scholar
  84. 84.
    Vidi, P.-A., Maleki, T., Ochoa, M., Wang, L., Clark, S.M., Leary, J.F., Lelièvre, S.A.: Disease-on-a-chip: mimicry of tumor growth in mammary ducts. Lab. Chip. 14, 172–177 (2014). doi: 10.1039/c3lc50819f CrossRefGoogle Scholar
  85. 85.
    Duque-Muñoz, L., Aguirre-Echeverry, C.A., Castellanos-Domínguez, G.: EEG rhythm analysis using stochastic relevance. IFMBE Proc. 41, 658–661 (2014). doi: 10.1007/978-3-319-00846-2 CrossRefGoogle Scholar
  86. 86.
    Rigat-Brugarolas, L.G., Elizalde-Torrent, A., Bernabeu, M., De Niz, M., Martin-Jaular, L., Fernandez-Becerra, C., Homs-Corbera, A., Samitier, J., del Portillo, H.A.: A functional microengineered model of the human splenon-on-a-chip. Lab. Chip. 14, 1715–1724 (2014). doi: 10.1039/c3lc51449h CrossRefGoogle Scholar
  87. 87.
    Grafton, M.M.G., Wang, L., Vidi, P.-A., Leary, J., Lelièvre, S.A.: Breast on-a-chip: mimicry of the channeling system of the breast for development of theranostics. Integr. Biol. (Camb) 3, 451–459 (2011). doi: 10.1039/c0ib00132e CrossRefGoogle Scholar
  88. 88.
    Yang, X., Mironov, V., Wang, Q.: Modeling fusion of cellular aggregates in biofabrication using phase field theories. J. Theor. Biol. 303, 110–118 (2012). doi: 10.1016/j.jtbi.2012.03.003 MathSciNetCrossRefGoogle Scholar
  89. 89.
    Yang, X., Sun, Y., Wang, Q.: A phase field approach for multicellular aggregate fusion in biofabrication. J. Biomech. Eng. 135, 71005 (2013). doi: 10.1115/1.4024139 CrossRefGoogle Scholar
  90. 90.
    Thomas, G.L., Mironov, V., Nagy-Mehez, A., Mombach, J.C.M.: Dynamics of cell aggregates fusion: Experiments and simulations. Phys. A Stat. Mech. its Appl. 395, 247–254 (2014). doi: 10.1016/j.physa.2013.10.037 CrossRefGoogle Scholar
  91. 91.
    Ki, C.S., Lin, T.-Y., Korc, M., Lin, C.-C.: Thiol-ene hydrogels as desmoplasia-mimetic matrices for modeling pancreatic cancer cell growth, invasion, and drug resistance. Biomaterials 35, 9668–9677 (2014). doi: 10.1016/j.biomaterials.2014.08.014 CrossRefGoogle Scholar
  92. 92.
    Abdulla, T, Imms, RA, Schleich, J-M, Summers, R: Towards multiscale systems modeling of endocardial to mesenchymal transition. In: Conf Proc. Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf 2011, pp. 449–52 (2011). doi: 10.1109/IEMBS.2011.6090062

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of EngineeringUniversity of British ColumbiaKelownaCanada

Personalised recommendations