Advertisement

Nanoparticles for Imaging and Non-viral Gene Therapy

  • Yoonjee Park
Chapter
Part of the Biosystems & Biorobotics book series (BIOSYSROB, volume 9)

Abstract

Gene therapy has not been investigated as much as pharmacotherapy because of immunogenic issues when a virus was used as a gene delivery vector. Despite the challenges, gene therapy still has attractive aspects. It has less side effects and is more target-specific compared to pharmacotherapy, and it also has potential for generic disease treatment or personalized medicine. Therefore, it would be truly beneficial if safe and reliable vectors are used and targeted for area of interest. Interest in multifunctional nanomedicine for diagnostics and therapeutics has been increasing. For this reason, non-viral gene delivery has been studied, combined with molecular imaging to visualize targeting. In this review, complex nanoparticle systems designed for molecular imaging and gene delivery are discussed. There are design criteria which need to be considered for the nanoparticle complex systems. The criteria are as follows: i) the nanoparticle complex should be stable; ii) it should have efficient targeting capability; iii) controlled release of genes should be available; iv) molecular imaging should be possible; and lastly, v) there should be noticeable therapeutic efficacy. Examples on nanoparticle complex which meet these criteria are described in the review.

Keywords

Molecular imaging Gene therapy Nanomedicine Contrast agents Non-viral gene delivery Theranostics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yi, Y., Noh, M.J., Lee, K.H.: Current Advances in Retroviral Gene Therapy. Current Gene Therapy 11(3), 218–228 (2011)CrossRefGoogle Scholar
  2. 2.
    Pack, D.W., et al.: Design and development of polymers for gene delivery. Nature Reviews Drug Discovery 4(7), 581–593 (2005)CrossRefGoogle Scholar
  3. 3.
    Blasberg, R.G., Tjuvajev, A.G.: Molecular-genetic imaging: current and future perspectives. Journal of Clinical Investigation 111(11), 1620–1629 (2003)CrossRefGoogle Scholar
  4. 4.
    Jacobs, A., et al.: Positron-emission tomography of vector-mediated gene expression in gene therapy for gliomas. Lancet 358(9283), 727–729 (2001)CrossRefGoogle Scholar
  5. 5.
    Jolly, D.: Viral Vector Systems for Gene-Therapy. Cancer Gene Therapy 1(1), 51–64 (1994)MathSciNetGoogle Scholar
  6. 6.
    Godbey, D.A.B.A.: Liposomes for Use in Gene Delivery. Journal of Drug Delivery 2011, 1–12 (2011)Google Scholar
  7. 7.
    Fattahi, A., et al.: Preparation and characterization of oligochitosan-tragacanth nanoparticles as a novel gene carrier. Carbohydrate Polymers 97(2), 277–283 (2013)CrossRefGoogle Scholar
  8. 8.
    Choi, Y.H., et al.: Lactose-poly(ethylene glycol)-grafted poly-L-lysine as hepatoma cell-targeted gene carrier. Bioconjugate Chemistry 9(6), 708–718 (1998)CrossRefGoogle Scholar
  9. 9.
    Boussif, O., et al.: A Versatile Vector for Gene and Oligonucleotide Transfer into Cells in Culture and in-Vivo - Polyethylenimine. Proceedings of the National Academy of Sciences of the United States of America 92(16), 7297–7301 (1995)CrossRefGoogle Scholar
  10. 10.
    Haensler, J., Szoka, F.C.: Polyamidoamine Cascade Polymers Mediate Efficient Transfection of Cells in Culture. Bioconjugate Chemistry 4(5), 372–379 (1993)CrossRefGoogle Scholar
  11. 11.
    Lim, Y.B., et al.: Biodegradable polyester, poly[alpha-(4 aminobutyl)-L-glycolic acid], as a non-toxic gene carrier. Pharmaceutical Research 17(7), 811–816 (2000)CrossRefGoogle Scholar
  12. 12.
    Kakizawa, Y., Kataoka, K.: Block copolymer self-assembly into monodispersive nanoparticles with hybrid core of antisense DNA and calcium phosphate. Langmuir 18(12), 4539–4543 (2002)CrossRefGoogle Scholar
  13. 13.
    Leventis, R., Silvius, J.R.: Interactions of Mammalian-Cells with Lipid Dispersions Containing Novel Metabolizable Cationic Amphiphiles. Biochimica Et Biophysica Acta 1023(1), 124–132 (1990)CrossRefGoogle Scholar
  14. 14.
    Gao, X., Huang, L.: A Novel Cationic Liposome Reagent for Efficient Transfection of Mammalian-Cells. Biochemical and Biophysical Research Communications 179(1), 280–285 (1991)CrossRefGoogle Scholar
  15. 15.
    Behr, J.P., et al.: Efficient Gene-Transfer into Mammalian Primary Endocrine-Cells with Lipopolyamine-Coated DNA. Proceedings of the National Academy of Sciences of the United States of America 86(18), 6982–6986 (1989)CrossRefGoogle Scholar
  16. 16.
    Wagner, D.E., Bhaduri, S.B.: Progress and Outlook of Inorganic Nanoparticles for Delivery of Nucleic Acid Sequences Related to Orthopedic Pathologies: A Review. Tissue Engineering Part B-Reviews 18(1), 1–14 (2012)CrossRefGoogle Scholar
  17. 17.
    Zheng, D., et al.: Topical delivery of siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation. Proceedings of the National Academy of Sciences of the United States of America 109(30), 11975–11980 (2012)CrossRefGoogle Scholar
  18. 18.
    Giljohann, D.A., et al.: Gene Regulation with Polyvalent siRNA-Nanoparticle Conjugates. Journal of the American Chemical Society 131(6), 2072 (2009)Google Scholar
  19. 19.
    Mao, H.Q., et al.: Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. Journal of Controlled Release 70(3), 399–421 (2001)CrossRefGoogle Scholar
  20. 20.
    Lakshminarayanan, A., et al.: Efficient Dendrimer-DNA Complexation and Gene Delivery Vector Properties of Nitrogen-Core Poly(propyl ether imine) Dendrimer in Mammalian Cells. Bioconjugate Chemistry 24(9), 1612–1623 (2013)CrossRefGoogle Scholar
  21. 21.
    Maiti, P.K., Bagchi, B.: Structure and dynamics of DNA-dendrimer complexation: Role of counterions, water, and base pair sequence. Nano Letters 6(11), 2478–2485 (2006)CrossRefGoogle Scholar
  22. 22.
    Copolovici, D.M., et al.: Cell-Penetrating Peptides: Design, Synthesis, and Applications. ACS Nano 8(3), 1972–1994 (2014)CrossRefGoogle Scholar
  23. 23.
    Palm-Apergi, C., Lonn, P., Dowdy, S.F.: Do Cell-Penetrating Peptides Actually “Penetrate” Cellular Membranes? Molecular Therapy 20(4), 695–697 (2012)CrossRefGoogle Scholar
  24. 24.
    Onishi, H., Machida, Y.: Biodegradation and distribution of water-soluble chitosan in mice. Biomaterials 20(2), 175–182 (1999)CrossRefGoogle Scholar
  25. 25.
    Rao, S.B., Sharma, C.P.: Use of chitosan as a biomaterial: Studies on its safety and hemostatic potential. Journal of Biomedical Materials Research 34(1), 21–28 (1997)CrossRefGoogle Scholar
  26. 26.
    Asai, T., et al.: Cell-penetrating peptide-conjugated lipid nanoparticles for siRNA delivery. Biochemical and Biophysical Research Communications 444(4), 599–604 (2014)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Elbakry, A., et al.: Layer-by-Layer Assembled Gold Nanoparticles for siRNA Delivery. Nano Letters 9(5), 2059–2064 (2009)CrossRefGoogle Scholar
  28. 28.
    Guo, S.T., et al.: Enhanced Gene Delivery and siRNA Silencing by Gold Nanoparticles Coated with Charge-Reversal Polyelectrolyte. ACS Nano 4(9), 5505–5511 (2010)CrossRefGoogle Scholar
  29. 29.
    Bulte, J.W.M., Kraitchman, D.L.: Iron oxide MR contrast agents for molecular and cellular imaging. Nmr in Biomedicine 17(7), 484–499 (2004)CrossRefGoogle Scholar
  30. 30.
    Zhu, D.R., et al.: Nanoparticle-Based Systems for T-1-Weighted Magnetic Resonance Imaging Contrast Agents. International Journal of Molecular Sciences 14(5), 10591–10607 (2013)CrossRefGoogle Scholar
  31. 31.
    Dixit, S., et al.: Phospholipid micelle encapsulated gadolinium oxide nanoparticles for imaging and gene delivery. Rsc Advances 3(8), 2727–2735 (2013)CrossRefGoogle Scholar
  32. 32.
    Pan, B.F., et al.: Dendrimer-modified magnetic nanoparticles enhance efficiency of gene delivery system. Cancer Research 67(17), 8156–8163 (2007)CrossRefGoogle Scholar
  33. 33.
    Kamau, S.W., et al.: Enhancement of the efficiency of non-viral gene delivery by application of pulsed magnetic field. Nucleic Acids Research 34(5) (2006)Google Scholar
  34. 34.
    Lee, J.H., et al.: All-in-One Target-Cell-Specific Magnetic Nanoparticles for Simultaneous Molecular Imaging and siRNA Delivery. Angewandte Chemie-International Edition 48(23), 4174–4179 (2009)CrossRefGoogle Scholar
  35. 35.
    Popovtzer, R., et al.: Targeted Gold Nanoparticles Enable Molecular CT Imaging of Cancer. Nano Letters 8(12), 4593–4596 (2008)CrossRefGoogle Scholar
  36. 36.
    Tsien, R.Y.: The green fluorescent protein. Annual Review of Biochemistry 67, 509–544 (1998)CrossRefGoogle Scholar
  37. 37.
    Hernandez, R., Orbay, H., Cai, W.: Molecular Imaging Strategies for In Vivo Tracking of MicroRNAs: A Comprehensive Review. Current Medicinal Chemistry 20(29), 3594–3603 (2013)CrossRefGoogle Scholar
  38. 38.
    Contag, C.H., Bachmann, M.H.: Advances in vivo bioluminescence imaging of gene expression. Annual Review of Biomedical Engineering 4, 235–260 (2002)CrossRefGoogle Scholar
  39. 39.
    Zhou, M.Q., et al.: Assessment of Therapeutic Efficacy of Liposomal Nanoparticles Mediated Gene Delivery by Molecular Imaging for Cancer Therapy. Journal of Biomedical Nanotechnology 8(5), 742–750 (2012)CrossRefGoogle Scholar
  40. 40.
    Yguerabide, J., Yguerabide, E.E.: Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications - II. Experimental Characterization. Analytical Biochemistry 262(2), 157–176 (1998)CrossRefGoogle Scholar
  41. 41.
    Hellebust, A., Richards-Kortum, R.: Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics. Nanomedicine 7(3), 429–445 (2012)CrossRefGoogle Scholar
  42. 42.
    Horisberger, M., Rosset, J., Bauer, H.: Colloidal Gold Granules as Markers for Cell-Surface Receptors in Scanning Electron-Microscope. Experientia 31(10), 1147–1149 (1975)CrossRefGoogle Scholar
  43. 43.
    Timothy, L., et al.: Nanoparticles for targeted therapeutics and diagnostics. In: Handbook of Biomedical Optics, pp. 697–722. CRC Press. (2011)Google Scholar
  44. 44.
    Aaron, J., et al.: Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo. Journal of Biomedical Optics 12(3) (2007)Google Scholar
  45. 45.
    El-Sayed, I.H., Huang, X.H., El-Sayed, M.A.: Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer. Nano Letters 5(5), 829–834 (2005)CrossRefGoogle Scholar
  46. 46.
    Skala, M.C., et al.: Photothermal Optical Coherence Tomography of Epidermal Growth Factor Receptor in Live Cells Using Immunotargeted Gold Nanospheres. Nano Letters 8(10), 3461–3467 (2008)CrossRefGoogle Scholar
  47. 47.
    Yang, X.M., et al.: Photoacoustic tomography of a rat cerebral cortex in vivo with au nanocages as an optical contrast agent. Nano Letters 7(12), 3798–3802 (2007)CrossRefGoogle Scholar
  48. 48.
    Durr, N.J., et al.: Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Letters 7(4), 941–945 (2007)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Holliger, P., Hudson, P.J.: Engineered antibody fragments and the rise of single domains. Nature Biotechnology 23(9), 1126–1136 (2005)CrossRefGoogle Scholar
  50. 50.
    Lee, S., Xie, J., Chen, X.Y.: Peptide-Based Probes for Targeted Molecular Imaging. Biochemistry 49(7), 1364–1376 (2010)CrossRefGoogle Scholar
  51. 51.
    Reubi, J.C., Maecke, H.R.: Peptide-Based Probes for Cancer Imaging. Journal of Nuclear Medicine 49(11), 1735–1738 (2008)CrossRefGoogle Scholar
  52. 52.
    Lin, G.M., et al.: Biodegradable Nanocapsules as siRNA Carriers for Mutant K-Ras Gene Silencing of Human Pancreatic Carcinoma Cells. Small 9(16), 2757–2763 (2013)CrossRefGoogle Scholar
  53. 53.
    Lee, S.Y., et al.: Shell cross-linked polyethylenimine-modified micelles for temperature-triggered drug release and gene delivery. Rsc Advances 4(101), 57702–57708 (2014)CrossRefGoogle Scholar
  54. 54.
    Mehrotra, S., Lee, I., Chan, C.: Multilayer mediated forward and patterned siRNA transfection using linear-PEI at extended N/P ratios. Acta Biomaterialia 5(5), 1474–1488 (2009)CrossRefGoogle Scholar
  55. 55.
    McKenzie, D.L., et al.: Low molecular weight disulfide cross-linking peptides as nonviral gene delivery carriers. Bioconjugate Chemistry 11(6), 901–909 (2000)CrossRefGoogle Scholar
  56. 56.
    Handwerger, R.G., Diamond, S.L.: Biotinylated photocleavable polyethylenimine: Capture and triggered release of nucleic acids from solid supports. Bioconjugate Chemistry 18(3), 717–723 (2007)CrossRefGoogle Scholar
  57. 57.
    Dieguez, L., et al.: Electrochemical tuning of the stability of PLL/DNA multilayers. Soft Matter 5(12), 2415–2421 (2009)CrossRefGoogle Scholar
  58. 58.
    Saurer, E.M., et al.: Assembly of erodible, DNA-containing thin films on the surfaces of polymer microparticles: Toward a layer-by-layer approach to the delivery of DNA to antigen-presenting cells. Acta Biomaterialia 5(3), 913–924 (2009)CrossRefGoogle Scholar
  59. 59.
    Schuler, C., Caruso, F.: Decomposable hollow biopolymer-based capsules. Biomacromolecules 2(3), 921–926 (2001)CrossRefGoogle Scholar
  60. 60.
    Newman, C.M.H., Bettinger, T.: Gene therapy progress and prospects: Ultrasound for gene transfer. Gene Therapy 14(6), 465–475 (2007)CrossRefGoogle Scholar
  61. 61.
    Uthaman, S., et al.: Polysaccharide-Coated Magnetic Nanoparticles for Imaging and Gene Therapy. BioMed Research InternationalGoogle Scholar
  62. 62.
    Dobson, J.: Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Therapy 13(4), 283–287 (2006)CrossRefGoogle Scholar
  63. 63.
    Cherukuri, P., Glazer, E.S., Curleya, S.A.: Targeted hyperthermia using metal nanoparticles. Advanced Drug Delivery Reviews 62(3), 339–345 (2010)CrossRefGoogle Scholar
  64. 64.
    Truong, N.P., et al.: An influenza virus-inspired polymer system for the timed release of siRNA. Nature Communications 4 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Biomedical, Chemical & Environmental EngineeringUniversity of CincinnatiCincinnatiUSA

Personalised recommendations