Advertisement

Beta Current Flow Centrality for Weighted Networks

  • Konstantin E. AvrachenkovEmail author
  • Vladimir V. Mazalov
  • Bulat T. Tsynguev
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9197)

Abstract

Betweenness centrality is one of the basic concepts in the analysis of social networks. Initial definition for the betweenness of a node in a graph is based on the fraction of the number of geodesics (shortest paths) between any two nodes that given node lies on, to the total number of the shortest paths connecting these nodes. This method has quadratic complexity and does not take into account indirect paths. We propose a new concept of betweenness centrality for weighted network, beta current flow centrality, based on Kirchhoff’s law for electric circuits. In comparison with the original current flow centrality and alpha current flow centrality, this new measure can be computed for larger networks. The results of numerical experiments for some examples of networks, in particular, for the popular social network VKontakte as well as the comparison with PageRank method are presented.

Keywords

Beta current flow centrality Betweenness centrality Pagerank Weighted graph Social networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aumann, R., Myerson, R.: Endogenous formation of links between players and coalitions: an application of the Shapley value. In: The Shapley value, pp. 175–191. Cambridge University Press (1988)Google Scholar
  2. 2.
    Avrachenkov, K., Litvak, N., Medyanikov, V., Sokol, M.: Alpha current flow betweenness centrality. In: Bonato, A., Mitzenmacher, M., Prałat, P. (eds.) WAW 2013. LNCS, vol. 8305, pp. 106–117. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  3. 3.
    Avrachenkov, K., Litvak, N., Nemirovsky, D., Smirnova, E., Sokol, M.: Quick detection of top-k personalized pagerank lists. In: Frieze, A., Horn, P., Prałat, P. (eds.) WAW 2011. LNCS, vol. 6732, pp. 50–61. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  4. 4.
    Avrachenkov, K.E., Filar J.A., Howlett, P.G.: Analytic Perturbation Theory and its Applications. SIAM (2013)Google Scholar
  5. 5.
    Borgatti, S.P., Everett, M.G., Freeman, L.C.: Ucinet for Windows: Software for Social Network Analysis. Harvard (2002)Google Scholar
  6. 6.
    Borm, P., Owen, G., Tijs, S.: On the position value for communication situations. SIAM J. on Disc. Math. 5(3), 305–320 (1992)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Borm, P., van den Nouweland, A., Tijs, S.: Cooperation and communication restrictions: a survey. In: Imperfections and Behavior in Economic Organizations. Kluwer (1994)Google Scholar
  8. 8.
    Brandes, U.: A faster algorithm for betweenness centrality. Journal of Mathematical Sociology 25, 163–177 (2001)CrossRefzbMATHGoogle Scholar
  9. 9.
    Brandes, U., Fleischer, D.: Centrality measures based on current flow. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 533–544. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  10. 10.
    Calvo, E., Lasaga, J., van den Nouweland, A.: Values of games with probabilistic graphs. Math. Social Sci. 37, 79–95 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40, 35–41 (1977)CrossRefGoogle Scholar
  12. 12.
    Jackson, M.O.: Allocation rules for network games. Games and Econ. Behav. 51(1), 128–154 (2005)CrossRefzbMATHGoogle Scholar
  13. 13.
    Jackson, M.O., Wolinsky, J.: A strategic model of social and economic networks. J. Econ. Theory 71(1), 44–74 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Jackson, M.O.: Social and economic networks. Princeton University Press (2008)Google Scholar
  15. 15.
    Jamison, R.E.: Alternating Whitney sums and matchings in trees. Part 1. Disc. Math. 67, 177–189 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Mazalov, V.: Mathematical Game Theory and Applications. Wiley (2014)Google Scholar
  17. 17.
    Mazalov, V.V., Trukhina, L.I.: Generating functions and the Myerson vector in communication networks. Disc. Math. and Appl. 24(5), 295–303 (2014)MathSciNetGoogle Scholar
  18. 18.
    Myerson, R.B.: Graphs and cooperation in games. Math. Oper. Res. 2, 225–229 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Newman, M.E.J.: A measure of betweenness centrality based on random walks. Social networks 27, 39–54 (2005)CrossRefGoogle Scholar
  20. 20.
    Opsahl, T., Agneessens, F., Skvoretz, J.: Node centrality in weighted networks: generalizing degree and shortest paths. Social Networks 32, 245–251 (2010)CrossRefGoogle Scholar
  21. 21.
    Slikker, M.: Link monotonic allocation schemes. Int. Game Theory Review 7(4), 473–489 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Slikker, M., Gilles, R.P., Norde, H., Tijs, S.: Directed networks, allocation properties and hierarchy formation. Math. Social Sci. 49(1), 55–80 (2005)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Talman, D., Yamamoto, Y.: Average tree solutions and subcore for acyclic graph games. J. Oper. Res. Soc. Japan 51(3), 187–201 (2008)MathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Konstantin E. Avrachenkov
    • 1
    Email author
  • Vladimir V. Mazalov
    • 2
  • Bulat T. Tsynguev
    • 3
  1. 1.INRIASophia-AntipolisFrance
  2. 2.Institute of Applied Mathematical Research, Karelian Research CenterRussian Academy of SciencesPetrozavodskRussia
  3. 3.Transbaikal State UniversityChitaRussia

Personalised recommendations