Advertisement

Extending Participatory Design Principles to Structured User-Generated Content

  • Roman LukyanenkoEmail author
  • Jeffrey Parsons
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 223)

Abstract

The long tradition of research on participative design dates back to 1970 s and has traditionally investigated software development within organizational settings. In this context, many approaches to engaging users in software development were proposed and evaluated, leading to the establishment of principles of participative design. Recently, the proliferation of content-producing technologies such as social media and crowdsourcing has led to the explosion of user-generated content (UGC). In this paper we discuss how UGC settings differ substantially from the organizational environment in which principles of participative design have been originally developed. Developing systems that harness UGC presents unique challenges of user engagement generally not present in organizational settings. We thus identify the need for research extending participative design principles to the context of user-generated content.

Keywords

Participatory design User generated content Crowdsourcing 

References

  1. 1.
    Markus, M.L., Mao, J.: Participation in development and implementation-updating an old, tired concept for today’s is contexts. JAIS 5, 515–544 (2004)Google Scholar
  2. 2.
    Swanson, E.B.: Management information systems: appreciation and involvement. Manage. Sci. 21, 178–188 (1974)CrossRefGoogle Scholar
  3. 3.
    Bjerknes, G., Bratteteig, T.: User participation and democracy: a discussion of scandinavian research on system development. Scand. J. Inf. Syst. 7(1), 73–98 (1995)Google Scholar
  4. 4.
    Lucas, H.C.: Why Information Systems Fail. Columbia University Press, New York (1975)Google Scholar
  5. 5.
    Wilson, S., Bekker, M., Johnson, P., Johnson, H.: Helping and hindering user involvement—a tale of everyday design. In: Computer-Human Interaction, pp. 178–185 (1997)Google Scholar
  6. 6.
    Muller, M., Millen, D.R., Strohecker, C.: What makes a representative user representative? a participatory poster. In: Computer-Human Interaction, pp. 101–102 (2001)Google Scholar
  7. 7.
    Kujala, S.: User involvement: a review of the benefits and challenges. Behav. Inf. Technol. 22, 1–16 (2003)CrossRefGoogle Scholar
  8. 8.
    Bodker, S.: Creating conditions for participation: conflicts and resources in systems development. Hum. Comput. Interact. 11, 215–236 (1996)CrossRefGoogle Scholar
  9. 9.
    Kraft, P., Bansler, J.P.: The collective resource approach: the scandinavian experience. Scand. J. Inf. Syst. 6, 71–84 (1994)Google Scholar
  10. 10.
    Mumford, E., Henshall, D.: Designing Participatively: A Participative Approach to Computer Systems Design. Manchester, Sandbach (1979)Google Scholar
  11. 11.
    Ehn, P.: Work-Oriented Design of Computer Artifacts, vol. 78. Arbetslivscentrum, Stockholm (1988)Google Scholar
  12. 12.
    Iivari, J., Iivari, N.: Varieties of user-centeredness: an analysis of four development methods. Inf. Syst. J. 21, 125–153 (2010)Google Scholar
  13. 13.
    Checkland, P., Holwell, S.: Information, Systems, and Information Systems: Making Sense of the Field. John Wiley & Sons Inc, Hoboken (1998)Google Scholar
  14. 14.
    Keen, J.S.: Managing Systems Development. J. Wiley, New Delhi (1981)Google Scholar
  15. 15.
    Kauffman, R., Li, T., Heck, E.V.: Business network-based value creation in electronic commerce. Int. J. Electron. Commer. 15, 113–144 (2010)CrossRefGoogle Scholar
  16. 16.
    Parsons, J., Wand, Y.: A foundation for open information environments. In: ECIS 2014 Proceedings, Foundation for Open Information Environments, pp. 1–9-A (2014)Google Scholar
  17. 17.
    Lukyanenko, R., Parsons, J.: Information quality research challenge: adapting information quality principles to user-generated content. ACM J. Data Inf. Qual. 6(1), 1–3 (2015)CrossRefGoogle Scholar
  18. 18.
    Hochachka, W.M., Fink, D., Hutchinson, R.A., Sheldon, D., Wong, W., Kelling, S.: Data-intensive science applied to broad-scale citizen science. Trends Ecol. Evol. 27, 130–137 (2012)CrossRefGoogle Scholar
  19. 19.
    Wiggins, A. et al.: Data management guide for public participation in scientific research. DataOne Working Group, pp. 1–41 (2013)Google Scholar
  20. 20.
    Newell, A., Card, S.K.: The prospects for psychological science in human-computer interaction. Hum. Comput. Interact. 1, 209–242 (1985)CrossRefGoogle Scholar
  21. 21.
    Hansen, W. J.: User engineering principles for interactive systems. In: Proceedings of the November 16–18, 1971, Fall Joint Computer Conference, pp. 523–532 (1971)Google Scholar
  22. 22.
    Clement, A.: Computing at work: empowering action by low-level users’. Commun. ACM 37, 52–64 (1994)CrossRefGoogle Scholar
  23. 23.
    Dobing, B., Parsons, J.: How UML is used. CACM 49, 109–113 (2006)CrossRefGoogle Scholar
  24. 24.
    Gemino, A., Wand, Y.: A framework for empirical evaluation of conceptual modeling techniques. Requirements Eng. 9, 248–260 (2004)CrossRefGoogle Scholar
  25. 25.
    Wand, Y., Weber, R.: On the deep-structure of information-systems. ISJ 5(3), 203–223 (1995)Google Scholar
  26. 26.
    Moody, D.L.: Theoretical and practical issues in evaluating the quality of conceptual models: current state and future directions. DKE 55, 243–276 (2005)CrossRefGoogle Scholar
  27. 27.
    Gould, J.D., Lewis, C.: Designing for usability: key principles and what designers think. Commun. ACM 28, 300–311 (1985)CrossRefGoogle Scholar
  28. 28.
    Mylopoulos, J.: Information modeling in the time of the revolution. Inf. Syst. 23, 127–155 (1998)CrossRefGoogle Scholar
  29. 29.
    Gemino, A., Wand, Y.: Complexity and clarity in conceptual modeling: comparison of mandatory and optional properties. Data Knowl. Eng. 55, 301–326 (2005)CrossRefGoogle Scholar
  30. 30.
    Parsons, J., Cole, L.: What do the pictures mean? guidelines for experimental evaluation of representation fidelity in diagrammatical conceptual modeling techniques. Data Knowl. Eng. 55, 327–342 (2005)CrossRefGoogle Scholar
  31. 31.
    Lee, Y.W., Strong, D.M.: Knowing-why about data processes and data quality. J. Manage. Inf. Syst. 20, 13–39 (2003)Google Scholar
  32. 32.
    Wang, R.Y., Strong, D.M.: Beyond accuracy: what data quality means to data consumers. J. Manage. Inf. Syst. 12, 5–33 (1996)zbMATHGoogle Scholar
  33. 33.
    Zhu, H., Wu, H.: Quality of data standards: framework and illustration using XBRL taxonomy and instances. Electron. Markets 21, 129–139 (2011)CrossRefGoogle Scholar
  34. 34.
    Baskerville, R., De Marco, M., Spagnoletti, P.: Designing Organizational Systems: An Interdisciplinary Discourse. Springer, Berlin (2012)Google Scholar
  35. 35.
    Kujala, S., Kauppinen, M.: Identifying and selecting users for user-centered design. In: Computer-Human Interaction, pp. 297–303 (2004)Google Scholar
  36. 36.
    Cooper, A. a. o.: The inmates are running the asylum:[why high-tech products drive us crazy and how to restore the sanity], Vol. 261. Sams Indianapolis, Indianapolis, IN (1999)Google Scholar
  37. 37.
    Holone, H., Herstad, J.: Three Tensions in participatory design for inclusion. In: Computer Human Interaction, pp. 2903–2906 (2013)Google Scholar
  38. 38.
    McGrenere, J., Sullivan, J., Baecker, R.M.: Designing technology for people with cognitive impairments. In: CHI Workshop, pp. 1635–1638 (2006)Google Scholar
  39. 39.
    Bodker, S., Ehn, P., Knudsen, J., Kyng, M., Madsen, K.: Computer support for cooperative design. In: ACM Conference on Computer-Supported Cooperative Work, pp. 377–394 (1988)Google Scholar
  40. 40.
    Parsons, J.: Effects of local versus global schema diagrams on verification and communication in conceptual data modeling. J. Manage. Inf. Syst. 19, 155–184 (2003)Google Scholar
  41. 41.
    Ray, R.: Enterprise Resource Planning. New Delhi, McGraw-Hill Education (India) Pvt Limited (2011)Google Scholar
  42. 42.
    Doan, A., Ramakrishnan, R., Halevy, A.Y.: Crowdsourcing Systems on the World-Wide Web. Commun. ACM 54, 86–96 (2011)CrossRefGoogle Scholar
  43. 43.
    Wiggins, A., Crowston, K.: From conservation to crowdsourcing: a typology of citizen science (2011)Google Scholar
  44. 44.
    Whitla, P.: Crowdsourcing and its application in marketing activities. Contemp. Manage. Res. 5, 15–28 (2009)Google Scholar
  45. 45.
    Howe, J.: The rise of crowdsourcing. Wired 14(6), 176–183 (2006)MathSciNetGoogle Scholar
  46. 46.
    Barbier, G., Zafarani, R., Gao, H., Fung, G., Liu, H.: Maximizing benefits from crowdsourced data. Comput. Math. Organ. Theory 18, 257–279 (2012)CrossRefGoogle Scholar
  47. 47.
    de Boer, V., Hildebrand, M., Aroyo, L., De Leenheer, P., Dijkshoorn, C., Tesfa, B., Schreiber, G.: Nichesourcing: harnessing the power of crowds of experts. In: ten Teije, A., Völker, J., Handschuh, S., Stuckenschmidt, H., d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., Hernandez, N. (eds.) EKAW 2012. LNCS, vol. 7603, pp. 16–20. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  48. 48.
    Levina, N., Arriaga, M.: Distinction and status production on user-generated content platforms: using bourdieu’s theory of cultural production to understand social dynamics in online fields. Inf. Syst. Res. 25, 468–488 (2014)CrossRefGoogle Scholar
  49. 49.
    Susarla, A., Oh, J., Tan, Y.: Social networks and the diffusion of user-generated content: evidence from youtube. Inf. Syst. Res. 23, 23–41 (2012)CrossRefGoogle Scholar
  50. 50.
    Gallaugher, J., Ransbotham, S.: Social media and customer dialog management at starbucks. MIS Q. Executive 9, 197–212 (2010)Google Scholar
  51. 51.
    Delort, J., Arunasalam, B., Paris, C.: Automatic moderation of online discussion sites. Int. J. Electron. Commer. 15, 9–30 (2011)CrossRefGoogle Scholar
  52. 52.
    Daugherty, T., Eastin, M., Bright, L.: Exploring consumer motivations for creating user-generated content. J. Interact. Advertising 8, 16–25 (2008)CrossRefGoogle Scholar
  53. 53.
    Krumm, J., Davies, N., Narayanaswami, C.: User-Generated content. IEEE Pervasive Comput. 7, 10–11 (2008)CrossRefGoogle Scholar
  54. 54.
    Vallente, D.: Information Explosion & Cloud Storage (2010). http://wikibon.org/blog/cloud-storage/. Accessed 10 Jan 2015
  55. 55.
    Piskorski, M.J.: Social strategies that work. Harvard Bus. Rev. 89, 116 (2011)Google Scholar
  56. 56.
    Gangi, P.M.D., Wasko, M., Hooker, R.: Learning from dell how to succeed with online user innovation communities. MIS Q. Executive 9, 163–178 (2010)Google Scholar
  57. 57.
    Culnan, M.J., McHugh, P.J., Zubillaga, J.I.: How large U.S. companies can use twitter and other social media to gain business value. MIS Q. Executive 9, 243 (2010)Google Scholar
  58. 58.
    Barwise, P., Meehan, S.: The one thing you must get right when building a brand. Harvard Bus. Rev. 88, 80–84 (2010)Google Scholar
  59. 59.
    Majchrzak, A.N.N., More, P.H.B.: Emergency! web 2.0 to the rescue! Commun. ACM 54, 125–132 (2011)CrossRefGoogle Scholar
  60. 60.
    Sieber, R.: public participation geographic information systems: a literature review and framework. Ann. Assoc. Am. Geogr. 96, 491–507 (2006)CrossRefGoogle Scholar
  61. 61.
    Johnson, P.A., Sieber, R.E.: Situating the Adoption of VGI by Government. In: Sui, D., Elwood, S., Goodchild, M. (eds.) Crowdsourcing Geographic Knowledge, pp. 65–81. Springer, The Netherlands (2012)Google Scholar
  62. 62.
    Machan, D.: DaaS: The new information goldmine. Wall Street Journal, 1–3 (2009)Google Scholar
  63. 63.
    Zwass, V.: Co-Creation: toward a taxonomy and an integrated research perspective. Int. J. Electron. Commer. 15, 11–48 (2010)CrossRefGoogle Scholar
  64. 64.
    Girres, J., Touya, G.: Quality assessment of the french openstreetmap dataset. Trans. GIS 14, 435–459 (2010)CrossRefGoogle Scholar
  65. 65.
    Haklay, M., Weber, P.: OpenStreetMap: user-generated street maps. IEEE Pervasive Comput. 7, 12–18 (2008)CrossRefGoogle Scholar
  66. 66.
    Goodchild, M.: Citizens as sensors: the world of volunteered geography. GeoJournal 69, 211–221 (2007)CrossRefGoogle Scholar
  67. 67.
    Gao, G., McCullough, J.S., Agarwal, R., Jha, A.K.: Are Doctors Created Equal? an Investigation of Online Ratings by Patients (2010)Google Scholar
  68. 68.
    Wattal, S., Schuff, D., Mandviwalla, M., Williams, C.B.: Web 2.0 and politics: the 2008 u.s. presidential election and an e-politics research agenda. MIS Q. 34, 669–688 (2010)Google Scholar
  69. 69.
    Hand, E.: People power. Nature 466, 685–687 (2010)CrossRefGoogle Scholar
  70. 70.
    Fortson, L. et al.: Galaxy Zoo: morphological classification and citizen science. Advances in Machine Learning and Data Mining for Astronomy, pp. 1–11 (2011)Google Scholar
  71. 71.
    Lintott, C.J., Schawinski, K., Keel, W., Van Arkel, H., Bennert, N., Edmondson, E., Thomas, D., Smith, D.J.B., Herbert, P.D., Jarvis, M.J., Virani, S., Andreescu, D., Bamford, S.P., Land, K., Murray, P., Nichol, R.C., Raddick, M.J., Slosar, A., Szalay, A., Vandenberg, J.: Galaxy zoo: hanny’s voorwerp, a quasar light echo? Mon. Not. R. Astron. Soc. 399, 129–140 (2009)CrossRefGoogle Scholar
  72. 72.
    Theobald, E.J., Ettinger, A., Burgess, H.K., DeBey, L.B., Schmidt, N.R., Froehlich, H.E., Wagner, C., HilleRisLambers, J., Tewksbury, J., Harsch, M.A.: Global change and local solutions: tapping the unrealized potential of citizen science for biodiversity research. Biol. Conserv. 181, 236–244 (2015)CrossRefGoogle Scholar
  73. 73.
    Brown M., Brown L., Thody, C.: Citizen Science in Action: The Christmas Bird Count. Prairie Fire (2010)Google Scholar
  74. 74.
    Lukyanenko, R., Parsons, J., Wiersma, Y.: The impact of conceptual modeling on dataset completeness: a field experiment. In: International Conference on Information Systems, pp. 1–18 (2014)Google Scholar
  75. 75.
    Coleman, D.J., Georgiadou, Y., Labonte, J.: Volunteered geographic information: the nature and motivation of producers. Int. J. Spat. Data Infrastruct. Res. 4, 332–358 (2009)Google Scholar
  76. 76.
    Selke, J., Lofi, C., Balke, W.: Pushing the boundaries of crowd-enabled databases with query-driven schema expansion. VLDB Endowment 5, 538–549 (2012)CrossRefGoogle Scholar
  77. 77.
    Ali, A.L., Schmid, F., Al-Salman, R., Kauppinen, T.: Ambiguity and plausibility: managing classification quality in volunteered geographic information. In: SIGSPATIAL, pp. 1–10 (2014)Google Scholar
  78. 78.
    Murphy, G.L.: The Big Book Of Concepts. MIT Press, Cambridge, Mass (2004)Google Scholar
  79. 79.
    Smith, L.B.: Emerging ideas about categories. In: Gershkoff-Stowe, L., Rakison, D.H. (eds.) Building Object Categories in Developmental Time, pp. 159–175. L. Erlbaum Associates, Mahwah (2005)Google Scholar
  80. 80.
    McCloskey, M., Glucksberg, S.: Natural categories: well defined or fuzzy sets? Mem. Cogn. 6, 462–472 (1978)CrossRefGoogle Scholar
  81. 81.
    Tanaka, J.W., Taylor, M.: Object categories and expertise: is the basic level in the eye of the beholder? Cogn. Psychol. 23, 457–482 (1991)CrossRefGoogle Scholar
  82. 82.
    Lukyanenko, R., Parsons, J., Wiersma, Y.: The IQ of the crowd: understanding and improving information quality in structured user-generated content. Inf. Syst. Res. 25(4), 669–689 (2014)CrossRefGoogle Scholar
  83. 83.
    Lukyanenko, R., Parsons, J.: Is traditional conceptual modeling becoming obsolete? In: Conceptual Modeling: ER 2013, pp. 1–14 (2013)Google Scholar
  84. 84.
    Simon, H.A.: The Sciences of the Artificial. MIT Press, Massachusetts (1996)zbMATHGoogle Scholar
  85. 85.
    Lukyanenko, R., Parsons, J.: Reconciling theories with design choices in design science research. In: vom Brocke, J., Hekkala, R., Ram, S., Rossi, M. (eds.) DESRIST 2013. LNCS, vol. 7939, pp. 165–180. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  86. 86.
    Ambler, S.: Agile Database Techniques: Effective Strategies for the Agile Software Developer. Wiley, Hoboken (2003)Google Scholar
  87. 87.
    Roussopoulos, N., Karagiannis, D.: Conceptual modeling: past, present and the continuum of the future. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Conceptual Modeling: Foundations and Applications. LNCS, vol. 5600, pp. 139–152. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  88. 88.
    Parsons, J., Wand, Y.: Emancipating instances from the tyranny of classes in information modeling. ACM Trans. Database Syst. 25, 228–268 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.College of BusinessFlorida International UniversityMiamiUSA
  2. 2.Faculty of Business AdministrationMemorial UniversitySt. John’sCanada

Personalised recommendations