Skip to main content

Passive-Only Defect Detection and Imaging in Composites Using Diffuse Fields

  • Conference paper

Abstract

A wave-based passive approach is here presented to detect damage in composite materials subjected to diffuse wave fields. This is the case, for example, of wind turbine blades subjected to random air-structure interaction loads in operation. The known reconstruction of the Green’s function from cross-correlations of diffuse fields is first performed. A first approach, based on wave reciprocity applied to the passively reconstructed Greens function, is first proposed to detect damage located along the straight path between two sensors. A second approach, based on matched field processing applied to the passively reconstructed Green’s function, is then proposed to detect and locate damage anywhere in the structure. These techniques are suitable for structural health monitoring of structures subjected to random dynamic loads from operational environments such as wind turbines, aircraft, bridges, marine structures, etc.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Farrar, C.R., Worden, K.: An introduction to structural health monitoring. Philos. Transact. A Math. Phys. Eng. Sci. 365, 303–315 (2007)

    Article  Google Scholar 

  2. Farrar, C., James III, G.: System identification from ambient vibration measurements on a bridge. J. Sound Vib. 205, 1–18 (1997)

    Article  Google Scholar 

  3. Weaver, R.L., Lobkis, O.I.: Diffuse fields in open systems and the emergence of the Greens function (L). J. Acoust. Soc. Am. 116(5), 2731 (2004)

    Article  Google Scholar 

  4. Roux, P., Kuperman, W.A.: Extracting coherent wave fronts from acoustic ambient noise in the ocean. J. Acoust. Soc. Am. 116(4), 1995 (2004)

    Article  Google Scholar 

  5. Sabra, K.G., Roux, P., Kuperman, W.A.: Arrival-time structure of the time-averaged ambient noise cross-correlation function in an oceanic waveguide. J. Acoust. Soc. Am. 117(1), 164 (2005)

    Article  Google Scholar 

  6. Sabra, K.G.: Surface wave tomography from microseisms in Southern California. Geophys. Res. Lett. 32(14), L14311 (2005)

    Article  Google Scholar 

  7. Roux, P., Sabra, K.G., Kuperman, W.A., Roux, A.: Ambient noise cross correlation in free space: theoretical approach. J. Acoust. Soc. Am. 117(1), 79 (2005)

    Article  Google Scholar 

  8. Sabra, K.G., Srivastava, A., Lanza di Scalea, F., Bartoli, I., Rizzo, P., Conti, S.: Structural health monitoring by extraction of coherent guided waves from diffuse fields. J. Acoust. Soc. Am. 123, EL8–EL13 (2008)

    Google Scholar 

  9. Tippmann, J.D., Lanza di Scalea, F.: Passive-only damage detection by reciprocity of Green’s functions reconstructed from diffuse acoustic fields with application to wind turbine blades. J. Intell. Mater. Syst. Struct. (2014). doi:10.1177/1045389X14538539

    Google Scholar 

  10. Michaels, J.E., Michaels, T.E.: Detection of structural damage from the local temporal coherence of diffuse ultrasonic signals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1769–1782 (2005)

    Article  Google Scholar 

  11. Rose, J.: Ultrasonic waves in solid media. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  12. Johnson, D.H., Dudgeon, D.E.: Array Signal Processing: Concepts and Techniques. Simon & Schuster. New York, NY. (1992)

    Google Scholar 

  13. Michaels, J.E., Lu, Y., Michaels, T.E.: Methodologies for quantifying changes in diffuse ultrasonic signals with applications to structural health monitoring. In: Geer, R.E., Shull, P.J., Meyendorf, N., Kundu, T., Diaz, A.A., Aktan, A.E., Baaklini, G.Y., Gyekenyesi, A.L., Mufti, A.A., Michel, B., Wu, H.F., Doctor, S.R., Bar-Cohen, Y. (eds.) Proceedings of SPIE, vol. 5768, pp. 97–105 (2005)

    Google Scholar 

  14. Hall, J., Michaels, J.: Minimum variance ultrasonic imaging applied to an in situ sparse guided wave array. Ultrason. Ferroelectr. Freq. Control 57(10), 2311–2323 (2010)

    Article  Google Scholar 

  15. Baggeroer, A., Kuperman, W., Mikhalevsky, P.: An overview of matched field methods in ocean acoustics. IEEE J. Ocean. Eng. 18(4), 401–424 (1993)

    Article  Google Scholar 

  16. Corciulo, M., Roux, P., Campillo, M., Dubucq, D., Kuperman, W.A.: Multiscale matched-field processing for noise-source localization in exploration geophysics. Geophysics 77, KS33–KS41 (2012)

    Article  Google Scholar 

  17. Turek, G., Kuperman, W.: Applications of matched-field processing to structural vibration problems. J. Acoust. Soc. Am. 101(May), 1430–1440 (1997)

    Article  Google Scholar 

  18. Debever, C., Kuperman, W.A.: Robust matched-field processing using a coherent broadband white noise constraint processor. J. Acoust. Soc. Am. 122, 1979–1986 (2007)

    Article  Google Scholar 

  19. Park, H.W., Sohn, H., Law, K.H., Farrar, C.R.: Time reversal active sensing for health monitoring of a composite plate. J. Sound Vib. 302, 50–66 (2007)

    Article  Google Scholar 

  20. Capon, J.: High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE 57(8), 1408–1418 (1969)

    Article  Google Scholar 

  21. Cox, H., Zeskind, R., Owen, M.: Robust adaptive beamforming. IEEE Trans. Acoust. Speech Signal Process. 35, 1365–1376 (1987)

    Article  Google Scholar 

  22. Berry, D., Ashwill, T.: Design of 9-meter carbon-fiberglass prototype blades: CX-100 and TX-100. Tech. Rep. September (2007)

    Google Scholar 

  23. Tippmann, J., Manohar, A., Lanza di Scalea, F.: Wind turbine inspection tests at UCSD. SPIE Smart Struct. 8345, 7 (2012)

    Google Scholar 

Download references

Acknowledgements

We acknowledge the National Science Foundation for funding this work through Grant CMMI No. 1028365. Also, we thank Prof. William Kuperman of UCSD’s Scripps Institution of Oceanography for his guidance and discussions on the passive reconstruction of the Green’s functions and the MFP methods.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Lanza di Scalea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Tippmann, J.D., di Scalea, F.L. (2016). Passive-Only Defect Detection and Imaging in Composites Using Diffuse Fields. In: Ralph, C., Silberstein, M., Thakre, P., Singh, R. (eds) Mechanics of Composite and Multi-functional Materials, Volume 7. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-21762-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21762-8_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21761-1

  • Online ISBN: 978-3-319-21762-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics