Through Process Modeling Approach: Effect of Microstructure on Mechanical Properties of Fiber Reinforced Composites

  • Mouna ZaidaniEmail author
  • Mohammad Atif Omar
  • S. Kumar
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)


In this work, A Through Process Modelling (TPM) methodology suitable for coupling the microstructure and the elastic properties of composites considering plastic injection molding process is presented. The key tasks discussed in this study are: (1) simulation of the whole manufacturing process in order to get the fiber orientation distribution (FOD) at each point of the part, (2) estimation of local effective properties using the orientation tensor obtained by performing a two-step homogenization and (3) Prediction of macroscopic mechanical response as a function of a local anisotropy using a mean-field homogenization technique which is based on assumed relationships between average values of strain and stress fields in each phase. The scheme suggested allows, to analyze the influence of processing conditions on elastic properties of composites. By changing these conditions, for example, the injection mode (central or linear), the cavity thickness, the fiber volume fraction, the microstructure and hence the local elastic properties of the material can be tailored. Thus, for desired structural response of composites, the optimum filling parameters can be chosen even at the stage of design.


Through process modelling Plastic injection Processing conditions Elastic properties Fiber orientation 


  1. 1.
    De Monte, M., Moosbugger, E., Jasckek, K., Quaresimin, M.: Multiaxial fatigue of a short fibre reinforced polyamide 6.6 – fatigue and fracture behaviour. Int. J. Fat. 32, 7–28 (2010)CrossRefGoogle Scholar
  2. 2.
    Klimkeit, B.: Etude expérimentale et modélisation du comportement en fatigue multiaxiale d’un polymère renforcé pour application automobile. Ph.D. Thesis, École Nationale Supérieure de Mécanique et d’Aérotechnique (2009)Google Scholar
  3. 3.
    Launay, A., Maitournam, M., Marco, Y., Raoult, I., Szmytka, F.: Cyclic behavior of short glass fiber reinforced polyamide: experimental study and constitutive equations. Int. J. Plast. 27, 1267–1293 (2011)CrossRefzbMATHGoogle Scholar
  4. 4.
    Launay, A., Marco, Y., Maitournam, M., Raoult, I.: Influence of temperature and relative humidity on the cyclic behaviour of a short glass fiber reinforced polyamide. Mech. Mater. (submitted for publication)Google Scholar
  5. 5.
    Bernasconi, A., Davoli, P., Basile, A., Filippi, A.: Effect of fiber orientation on the fatigue behaviour of a short glass fiber reinforced polyamide-6. Int. J. Fat. 29, 199–208 (2007)CrossRefGoogle Scholar
  6. 6.
    De Monte, M., Moosbugger, E., Quaresimin, M.: Influence of temperature and thickness on the off-axis behaviour of short glass fibre reinforced polyamide 66 – quasi-static loading. Compos. Part A 41, 859–871 (2010)CrossRefGoogle Scholar
  7. 7.
    Goettler, L.A.: Flow orientation of short fibers in transfer molding. In: Proceedings of 25th Annual Conference on SPIRP/CDiv., Sect 14-A (1970a)Google Scholar
  8. 8.
    Goettler, L.A.: Controlling flow orientation in molding of short-fiber compounds. Mod. Plast. 47, 140 (1970b)Google Scholar
  9. 9.
    Darlington, M.W., Gladwell, B.K., Smith, G.R.: Structure and mechanical properties in injection molded discs of glass fiber reinforced polypropylene. Polymer 18, 1269 (1977)CrossRefGoogle Scholar
  10. 10.
    Hegler, R.P.: Faserorientierung beim Verarbeiten kurzfaserverstärkter Thermoplaste. Kunststoffe 74, 271–277 (1984)Google Scholar
  11. 11.
    Bay, R.S., Tucker, C.L.: Fiber orientation in simple injection moldings. Pt. 2. Experimental results. Polym. Compos. 13, 332–341 (1992)CrossRefGoogle Scholar
  12. 12.
    Saito, M., Kukula, S., Kataoka, Y., Miyata, T.: Practical use of statistically modified laminate model for injection moldings. Mater. Sci. Eng. A285, 280–287 (2000)CrossRefGoogle Scholar
  13. 13.
    Ding, D., et al.: Finite element simulation of an injection moulding process. Int. J. Numer. Methods Heat Fluid Flow 7(7), 751–766 (1997)CrossRefzbMATHGoogle Scholar
  14. 14.
    VerWeyst, B.E., et al.: Fiber orientation in 3-D injection molded features: prediction and experiment. Int. Polym. Process 14, 409–420 (1999)CrossRefGoogle Scholar
  15. 15.
    VerWeyst, B.E.: Numerical predictions of flow-induced fiber orientation in three-dimensional geometries. Mechanical Engineering, University of Illinois, Urbana-Champaign (1998)Google Scholar
  16. 16.
    Bay, R.S., Tucker, C.L.: Fiber orientation in simple injection moldings. Part I: theory and numerical methods. J. Polym. Compos. 13(4), 317–331 (1992)CrossRefGoogle Scholar
  17. 17.
    Advani, S.G., Tucker, C.L.: The use of tensors to describe and predict fiber orientation in short fiber composites. J. Rheol. 31, 751–784 (1987)CrossRefGoogle Scholar
  18. 18.
    San Rafael, Learning Autodesk Moldflow Insight Basic – Theory and Concepts 2012; 2011. Autodesk Inc. CA : ASCENT - Center for Technical Knowledge (2011)Google Scholar
  19. 19.
    Folgar, F., Tucker, C.L.: Orientation behavior of fibers in concentrated suspensions. J. Reinf. Plast. Compos. 3(2), 98–119 (1984)CrossRefGoogle Scholar
  20. 20.
    Chung, D.H., Kwon, T.H.: Fiber orientation in the processing of polymer composites. Korea–Aust. Rheol. J. 14(4), 175–88 (2002)Google Scholar
  21. 21.
    Chung, D.H., Kwon, T.H.: Applications of recently proposed closure approximations to injection molding filling simulation of short-fiber reinforced plastics. Korea–Aust. Rheol. J. 12(2), 125–33 (2000)Google Scholar
  22. 22.
    Patel, N.: Validation of 3D Moldflow filling analysis for TPV’s. Master’s thesis, University of Massachusetts, Lowell (2000)Google Scholar
  23. 23.
    Michel, V., Girould, T., Clarke, A., Eberhardt, C.: Description and modeling of fiber orientation in injection molding of fiber reinforced thermoplastics. Polymer 46, 6719–6725 (2005)CrossRefGoogle Scholar
  24. 24.
    Nemet, A., Mamat, O.: A study of fiber orientation in short fiber-reinforced composites with simultaneous mold filling and phase change effects. Compos. Part B 43, 1087–1094 (2012)CrossRefGoogle Scholar
  25. 25.
    Halpin, J.C.: Stiffness and expansion estimates for oriented short fiber composites. J. Compos. Mater. 3, 732–734 (1969)Google Scholar
  26. 26.
    Cox, H.L.: The elasticity and strength of paper and other fibrous materials. Br. J. Appl. Phys. 3, 72–79 (1952)CrossRefGoogle Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2016

Authors and Affiliations

  1. 1.Engineering Systems and ManagementMasdar Institute of Science and TechnologyAbu DhabiUnited Arab Emirates
  2. 2.Mechanical and Materials EngineeringMasdar Institute of Science and TechnologyAbu DhabiUnited Arab Emirates

Personalised recommendations