Advertisement

Probabilistic Seismic Hazard Assessment for Romania

  • Radu Vacareanu
  • Alexandru Aldea
  • Dan Lungu
  • Florin Pavel
  • Cristian Neagu
  • Cristian Arion
  • Sorin Demetriu
  • Mihail Iancovici
Chapter
Part of the Springer Natural Hazards book series (SPRINGERNAT)

Abstract

This chapter presents a seismic hazard model for Romania and the results obtained within the framework of the BIGSEES national research project (http://infp.infp.ro/bigsees/default.htm) financed by the Romanian Ministry of Education and Scientific Research in the period 2012–2016. One of the most important objectives of the BIGSEES Project is to provide a refined and updated seismic hazard map for a further revision of the seismic design code in Romania. To this aim, the seismicity of all sources influencing the Romanian territory are analyzed, the ground motion prediction equations to be used in the analysis are graded and a comprehensive sensitivity analysis is performed. Both aleatory and epistemic uncertainties are incorporated in the probabilistic seismic hazard analysis. The main results of the study presented hereinafter refers to seismicity parameters, logic tree branches' weights, seismic hazard curves and seismic hazard maps for peak ground accelerations and spectral accelerations, as well.

Keywords

Ground Motion Seismic Hazard Peak Ground Acceleration Seismic Source Strong Ground Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Funding for this research was provided within BIGEES Project by the Romanian Ministry of Education and Scientific Research under the Grant Number 72/2012. This support is gratefully acknowledged. The authors would like to extend their gratitude to Professor Mario Ordaz for providing the CRISIS2008 computer code.

References

  1. Akkar, S., & Bommer, J. J. (2006). Influence of long-period filter cut-off on elastic spectral displacements. Earthquake Engineering and Structural Dynamics, 35, 1145–1165.CrossRefGoogle Scholar
  2. Akkar, S., & Bommer, J. J. (2010). Empirical equations for the prediction of PGA, PGV and spectral accelerations in Europe, the Mediterranean and the Middle East. Seismological Research Letters, 81(2), 195–206.CrossRefGoogle Scholar
  3. Aldea, A., Vacareanu, R., Lungu, D., Pavel, F., & Demetriu, S. (2014). Probabilistic seismic hazard for Romania. Part II: sensitivity analysis. In: Vacareanu R, Ionescu C, editors, Proceedings of the 5th National Conference on Earthquake Engineering & 1st National Conference on Earthquake Engineering and Seismology (pp. 221–228), Bucharest, Romania.Google Scholar
  4. Ardeleanu, L., Leydecker, G., Bonjer, K.-P., Busche, H., Kaiser, D., & Schmitt, T. (2005). Probabilistic seismic hazard map for Romania as a basis for a new building code. Natural Hazards and Earth Systems Sciences, 5, 679–684.CrossRefGoogle Scholar
  5. Atkinson, G., & Boore, D. (2003). Empirical ground-motion relations for subduction-zone earthquakes and their application to Cascadia and other regions. Bulletin of the Seismological Society of America, 93(4), 1703–1729.CrossRefGoogle Scholar
  6. Beauval, C., Bard, P. Y., Hainzl, S., & Guéguen, P. (2008). Can strong-motion observations be used to constrain probabilistic seismic-hazard estimates? Bulletin of the Seismological Society of America, 98(2), 509–520.CrossRefGoogle Scholar
  7. Beauval, C., Hainzl, S., & Scherbaum, F. (2006). The impact of the spatial uniform distribution of seismicity on probabilistic seismic-hazard estimation. Bulletin of the Seismological Society of America, 96(6), 2465–2471.CrossRefGoogle Scholar
  8. Bommer, J. J., & Scherbaum, F. (2008). The use and misuse of logic-trees in probabilistic Seismic hazard analysis. Earthquake Spectra, 24, 997–1009.CrossRefGoogle Scholar
  9. Bommer, J. J., Scherbaum, F., Bungum, H., Cotton, F., Sabetta, F., Abrahamson, N. A., et al. (2005). On the use of logic trees for ground-motion prediction equations in seismic-hazard analysis. Bulletin of the Seismological Society of America, 95, 377–389.CrossRefGoogle Scholar
  10. Boore, D., & Bommer, J. J. (2006). Processing of strong motion accelerograms: Needs, options and consequence. Soil Dynamics and Earthquake Engineering, 25, 93–115.CrossRefGoogle Scholar
  11. Cauzzi, C., & Faccioli, E. (2008). Broadband (0.05 to 20 s) prediction of displacement response spectra based on worldwide digital records. Journal of Seismology, 12(4), 453–475.CrossRefGoogle Scholar
  12. CEN. (2004). Eurocode 8: Design of structures for earthquake resistance, Part 1: General rules, seismic actions and rules for buildings. EN 1998-1:2004. Brussels, Belgium.Google Scholar
  13. Cornell, C. A. (1968). Engineering seismic risk analysis. Bulletin of the Seismological Society of America, 58, 1583–1606.Google Scholar
  14. Delavaud, E., Cotton, F., Akkar, S., Scherbaum, F., Danciu, L., Beauval, C., et al. (2012). Toward a ground-motion logic tree for probabilistic seismic hazard assessment in Europe. Journal of Seismology, 16(3), 451–473.CrossRefGoogle Scholar
  15. Douglas, J. (2011). Ground-motion prediction equations 1964–2010. PEER Report 2011/102, College of Engineering, Berkeley.Google Scholar
  16. Idriss, I. M. (2008a). An NGA empirical model for estimating the horizontal spectral values generated by shallow crustal earthquakes. Earthquake Spectra, 24(1), 217–242.CrossRefGoogle Scholar
  17. Idriss, I. M. (2008b). An NGA empirical model for estimating the horizontal spectral values generated by shallow crustal earthquakes. Earthquake Spectra, 24(1), 217–242.CrossRefGoogle Scholar
  18. Iervolino, I. (2013). Probabilities and fallacies: Why hazard maps cannot be validated by individual earthquakes. Earthquake Spectra, 29(3), 1125–1136.CrossRefGoogle Scholar
  19. Ismail-Zadeh, A., Matenco, L., Radulian, M., Cloetingh, S., & Panza, G. (2012). Geodynamics and intermediate-depth seismicity in Vrancea (the south-eastern Carpathians): Current state-of-the art. Tectonophysics, 530–531, 50–79.CrossRefGoogle Scholar
  20. Kaklamanos, J., Baise, L. G., & Boore, D. M. (2011). Estimating unknown input parameters when implementing the NGA ground-motion prediction equations in engineering practice. Earthquake Spectra, 27(4), 1219–1235.CrossRefGoogle Scholar
  21. Kale, Ö., & Akkar, S. (2013). A new procedure for selecting and ranking ground-motion prediction equations (GMPEs): The Euclidean distance-based ranking (EDR) method. Bulletin of the Seismological Society of America, 103(2A), 1069–1084.CrossRefGoogle Scholar
  22. Kijko, A. (2004). Estimation of the maximum earthquake magnitude, mmax. Pure Applied Geophysics, 161, 1655–1681.CrossRefGoogle Scholar
  23. Kramer, S. (1996). Geotechnical earthquake engineering. Upper Saddle River: Prentice Hall.Google Scholar
  24. Kulkarni, R. B., Youngs, R. R., & Coppersmith, K. J. (1984). Assessment of confidence intervals for results of seismic hazard analysis. In Proceedings, Eighth World Conference on Earthquake Engineering (Vol. 1, pp. 263–270), International Association for Earthquake Engineering, Tokyo.Google Scholar
  25. Leydecker, G., Busche, H., Bonjer, K.-P., Schmitt, T., Kaiser, D., Simeonova, S., et al. (2008). Probabilistic seismic hazard in terms of intensities for Bulgaria and Romania—Updated hazard maps. Natural Hazards and Earth Systems Sciences, 8, 1–9.CrossRefGoogle Scholar
  26. Lin, P. S., & Lee, C. T. (2008). Ground-motion attenuation relationships for subduction-zone earthquakes in Northeastern Taiwan. Bulletin of the Seismological Society of America, 98(1), 220–240.CrossRefGoogle Scholar
  27. Lungu, D., Cornea, T., & Nedelcu, C. (1999). Hazard assessment and site dependent response for Vrancea earthquakes. In F. Wenzel, et al. (Eds.), Vrancea earthquakes: Tectonics, hazard and risk mitigation (pp. 251–267). Dordrecht: Kluwer.CrossRefGoogle Scholar
  28. Lungu, D., Demetriu, S., Radu, C., & Coman, O. (1994). Uniform hazard response spectra for Vrancea earthquakes in Romania. Proceedings of Tenth European Conference on Earthquake Engineering (Vol. 1, pp. 365–370).Google Scholar
  29. Lungu, D., Vacareanu, R., Aldea, A., & Arion, C. (2000). Advanced structural analysis. Bucharest: Conspress.Google Scholar
  30. Lungu D., Demetriu, S., Aldea, A., & Arion, C. (2006). Probabilistic seismic hazard assessment for Vrancea earthquakes and seismic action in the new seismic code of Romania. Proceedings of First European Conference on Earthquake Engineering and Seismology, (September 3–8, 2006, Geneva, CD_ROM, paper 1003).Google Scholar
  31. Mäntyniemi, P., Marza, V. I., Kijko, A., & Retief, P. (2003). A new probabilistic seismic hazard analysis for the Vrancea (Romania) Seismogenic Zone. Natural Hazards, 29, 371–385.CrossRefGoogle Scholar
  32. Marmureanu, G., Cioflan, C. O., & Marmureanu, A. (2010). Research regarding the local seismic hazard (microzonation) of the Bucharest metropolitan area (in Romanian). Iasi: Tehnopress.Google Scholar
  33. Marmureanu, G., Popescu, E., Popa, M., Moldovan, A. I., Placinta, A. O., & Ralulian, M. (2004). Seismic zoning characterization for the seismic hazard assessment in South-Eastern Romania territory. Acta Geod Geoph Hung, 39, 259–274.CrossRefGoogle Scholar
  34. Mârza, V. I., Kijko, A., & Mäntyniemi, P. (1991). Estimate of earthquake hazard in the Vrancea (Romania) region. Pure and Applied Geophysics, 136, 143–154.CrossRefGoogle Scholar
  35. McGuire, R. (1976) FORTRAN computer program for seismic risk analysis. U.S. Geological Survey Open-File Report 76–67.  Google Scholar
  36. McGuire, R. (1999). Probabilistic seismic hazard analysis and design earthquakes: Closing the loop. Bulletin of the Seismological Society of America, 85(5), 1275–1284.Google Scholar
  37. McGuire, R. (2004). Seismic hazard and risk analysis. Earthquake Engineering Research Institute MNO-10.Google Scholar
  38. Musson, R. M. W. (2000). Generalized seismic hazard maps for the pannonian basin using probabilistic methods. Pure and Applied Geophysics, 157, 147–169.CrossRefGoogle Scholar
  39. Ordaz, M., & Reyes, C. (1999). Earthquake hazard in Mexico-City; observations versus computations. Bulletin of the Seismological Society of America, 89(5), 1379–1383.Google Scholar
  40. Ordaz, M., Martinelli, F., D’Amico, V., & Meletti, C. (2013). CRISIS2008: A Flexible Tool to Perform Probabilistic Seismic Hazard Assessment. Seismological Research Letters, 84(3), 495–504.Google Scholar
  41. Pavel, F., Vacareanu, R., Neagu, C., & Arion, C. (2014a). Probabilistic seismic hazard for Romania. Part I: selection of GMPEs. In: Vacareanu R, Ionescu C, editors, Proceedings of the 5th National Conference on Earthquake Engineering & 1st National Conference on Earthquake Engineering and Seismology, (pp. 213–220) Bucharest, Romania.CrossRefGoogle Scholar
  42.  Pavel, F., Vacareanu, R., Arion, C., & Neagu, C. (2014b). On the variability of strong ground motions recorded from Vrancea earthquakes. Earthquakes and Structures, 6(1), 1–18.Google Scholar
  43. Radulian, M., Mandrescu, N., Popescu, E., Utale, A., & Panza, G. (2000a). Characterization of Romanian seismic zones. Pure and Applied Geophysics, 157, 57–77.CrossRefGoogle Scholar
  44. Radulian, M., Vaccari, F., Mandrescu, N., Panza, G. F., & Moldoveanu, C. L. (2000b). Seismic hazard of Romania: Deterministic approach. Pure and Applied Geophysics, 157, 221–247.CrossRefGoogle Scholar
  45. Reiter, L. (1990). Earthquake hazard analysis: Issues and insights. New York: Columbia University Press.Google Scholar
  46. Rydelek, P. A., & Sacks, I. S. (1989). Testing the completeness of earthquake catalogs and the hypothesis of self-similarity. Nature, 337, 251–253.CrossRefGoogle Scholar
  47. Scassera, G., Stewart, J., Bazzurro, P., Lanzo, G., & Mollaioli, F. (2009). A comparison of NGA ground-motion prediction equations to Italian data. Bulletin of the Seismological Society of America, 99(5), 2961–2978.CrossRefGoogle Scholar
  48. Scherbaum, F., Cotton, F., & Smit, P. (2004). On the use of response spectral-reference data for the selection and ranking of ground-motion models for seismic-hazard analysis in regions of moderate seismicity: The case of rock motion. Bulletin of the Seismological Society of America, 94(6), 2164–2185.CrossRefGoogle Scholar
  49. Scherbaum, F., Delavaud, E., & Riggelsen, E. (2009). Model selection in seismic hazard analysis: An information theoretic perspective. Bulletin of the Seismological Society of America, 99(6), 3234–3247.CrossRefGoogle Scholar
  50. Simeonova, S. D., Solakov, D. E., Leydecker, G., Bushe, H., Schmitt, T., & Kaiser, D. (2006). Probabilistic seismic hazard map for Bulgaria as a basis for a new building code. Natural Hazards and Earth Systems Sciences, 6, 881–887.CrossRefGoogle Scholar
  51. Sokolov, V Yu., Wenzel, F., & Mohindra, R. (2009). Probabilistic seismic hazard assessment for Romania and sensitivity analysis: A case of joint consideration of intermediate-depth (Vrancea) and shallow (crustal) seismicity. Soil Dynamics and Earthquake Engineering, 29, 364–381.CrossRefGoogle Scholar
  52. Strasser, F., Bommer, J. J., & Abrahamson, N. A. (2008). Truncation of the distribution of ground-motion residuals. Journal of Seismology, 12, 79–105.CrossRefGoogle Scholar
  53. Stucchi, M., Rovida, A., Gomez Capera, A. A., Alexandre, P., Camelbeeck, T., Demircioglu, M. B., et al. (2013). The SHARE European Earthquake Catalogue (SHEEC) 1000–1899. Journal of Seismology, 17, 523–544.CrossRefGoogle Scholar
  54. Vacareanu, R., Lungu, D., Marmureanu, G., Cioflan, C., Aldea, A., & Arion, C., et al. (2013a). Statistics of seismicity for Vrancea subcrustal source. In Proceedings of the International Conference on Earthquake Engineering SE-50 EEE, 29–31 May 2013 (Paper no. 138), Skopje.Google Scholar
  55. Vacareanu, R., Pavel, F., & Aldea, A. (2013b). On the selection of GMPEs for Vrancea subcrustal seismic source. Bulletin of Earthquake Engineering, 11(6), 1867–1884.CrossRefGoogle Scholar
  56. Vacareanu, R., Lungu, D., Aldea, A., Demetriu, S., Pavel, F., Arion, C., Iancovici, M., & Neagu, C. (2014a). Probabilistic seismic hazard for Romania. Part III: seismic hazard maps. In: Vacareanu R, Ionescu C, editors, Proceedings of the 5th National Conference on Earthquake Engineering & 1st National Conference on Earthquake Engineering and Seismology, (pp. 229–236) Bucharest, Romania.Google Scholar
  57. Vacareanu, R., Radulian, M., Iancovici, M., Pavel, F., & Neagu, C. (2014b). Fore-arc and back-arc ground motion prediction model for Vrancea intermediate depth seismic source. Journal of Earthquake Engineering, DOI:  10.1080/13632469.2014.990653.
  58. Wald, D. J., & Allen, T. I., (2007). Topographic slope as a proxy for seismic site conditions and amplification, Bulletin of the Seismological Society of America , 97(5): 1379–1395.  Google Scholar
  59. Wiemer, S., & Wyss, M. (2000). Minimum magnitude of complete reporting in earthquake catalogs: Examples from Alaska, the western United States, and Japan. Bulletin of the Seismological Society of America, 90, 859–869.CrossRefGoogle Scholar
  60. Youngs, R. R., Chiou, S. J., Silva, W. J., & Humphrey, J. R. (1997). Strong ground motion attenuation relationships for subduction zone earthquakes. Seismological Research Letters, 68(1), 58–73.CrossRefGoogle Scholar
  61. Zhao, J., Zhang, J., Asano, A., Ohno, Y., Oouchi, T., Takahashi, T., et al. (2006). Attenuation relations of strong ground motion in Japan using site classification based on predominant period. Bulletin of the Seismological Society of America, 96(3), 898–913.CrossRefGoogle Scholar
  62. Zuniga, F. R., & Wyss, M. (1995). Inadvertent changes in magnitude reported in earthquake catalogs: Their evaluation through b-value estimates. Bulletin of the Seismological Society of America, 85, 1858–1866.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Radu Vacareanu
    • 1
  • Alexandru Aldea
    • 1
  • Dan Lungu
    • 1
  • Florin Pavel
    • 1
  • Cristian Neagu
    • 1
  • Cristian Arion
    • 1
  • Sorin Demetriu
    • 1
  • Mihail Iancovici
    • 1
  1. 1.Seismic Risk Assessment Research CenterTechnical University of Civil EngineeringBucharestRomania

Personalised recommendations