Finite Element Modelling for Seismic Assessment of Historic Masonry Buildings

  • Michele Betti
  • Luciano Galano
  • Andrea Vignoli
Part of the Springer Natural Hazards book series (SPRINGERNAT)


The chapter discusses on the use of the finite element modelling technique for the seismic assessment of historic masonry buildings, outlining that advanced numerical analyses can provide significant information to understand their actual structural behaviour. A finite element methodology for the static and dynamic nonlinear analysis of historic masonry structures is described and exemplified through the discussion of two representative case studies: a masonry church and an old residential building.


Direct Shear Test Masonry Wall Masonry Building Mortar Joint Seismic Assessment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adam, J. M., Brencich, A., Hughes, T., & Jefferson, T. (2010). Micromodelling of eccentrically loaded brickwork: Study of masonry wallettes. Engineering Structures, 32(5), 1244–1251.CrossRefGoogle Scholar
  2. Adam, J. M., Ivorra, S., Pallarés, F. J., Giménez, E., & Calderón, P. A. (2009). Axially loaded RC columns strengthened by steel caging. Finite element modelling. Construction and Building Materials, 23(6), 2265–2276.CrossRefGoogle Scholar
  3. ANSYS Inc. (1998). ANSYS manual. USA: Southpoint.Google Scholar
  4. Antoniou, S., & Pinho, R. (2004). Advantages and limitations of adaptive and non adaptive force-based pushover procedures. Journal of Earthquake Engineering, 8(4), 497–522.Google Scholar
  5. Bartoli, G., & Betti, M. (2013). Cappella dei Principi in Firenze, Italy: Experimental analyses and numerical modeling for the investigation of a local failure. ASCE’s Journal of Performance of Constructed Facilities, 27(1), 4–26.CrossRefGoogle Scholar
  6. Berto, L., Saetta, A., Scotta, R., & Vitaliani, R. (2005). Failure mechanism prism loaded in axial compression: Computational aspects. Materials and Structures, 38, 249–256.CrossRefGoogle Scholar
  7. Betti, M., Bartoli, G., & Orlando, M. (2010). Evaluation study on structural fault of a Renaissance Italian Palace. Engineering Structures, 32(7), 1801–1813.CrossRefGoogle Scholar
  8. Betti, M., & Vignoli, A. (2008). Modelling and analysis of a Romanesque church under earthquake loading: Assessment of seismic resistance. Engineering Structures, 30(2), 352–367.CrossRefGoogle Scholar
  9. Binda, L., Saisi, A., & Tiraboschi, C. (2000). Investigation procedures for the diagnosis of historic masonries. Construction and Building Materials, 14, 199–233.CrossRefGoogle Scholar
  10. Borri, A., Corradi, M., & Vignoli, A. (2000). Il comportamento strutturale della muratura nelle zone terremotate dell’Umbria: alcune sperimentazioni. Ingegneria Sismica, XVII(3), 23–33. (in Italian).Google Scholar
  11. Bowitz, E., & Ibenholt, K. (2009). Economic impacts of cultural heritage—Research and perspectives. Journal of Cultural Heritage, 10(1), 1–8.CrossRefGoogle Scholar
  12. Brandonisio, G., Lucibello, G., Mele, E., & De Luca, A. (2013). Damage and performance evaluation of masonry churches in the 2009 L’Aquila earthquake. Engineering Failure Analysis, 34, 693–714.CrossRefGoogle Scholar
  13. Carpinteri, A., Invernizzi, S., & Lacidogna, G. (2005). In situ damage assessment and nonlinear modelling of a historical masonry tower. Engineering Structures, 27, 387–395.CrossRefGoogle Scholar
  14. Ceci, A. M., Contento, A., Fanale, L., Galeota, D., Gattulli, V., Lepidi, M., & Potenza, F. (2013). Structural performance of the historic and modern buildings of the University of L’Aquila during the seismic events of April 2009. Engineering Structures, 32(7), 1899–1924.CrossRefGoogle Scholar
  15. Cerioni, R., Brighenti, R., & Donida, G. (1995). Use of incompatible displacement modes in a finite element model to analyze the dynamic behavior of unreinforced masonry panels. Computers & Structures, 57(1), 47–57.CrossRefGoogle Scholar
  16. Chiostrini, S., Galano, L., & Vignoli, A. (1998). In situ tests and numerical simulations on structural behaviour of ancient masonry. In Proceedings of Monument-98, Workshop on Seismic Performance of Monuments, Lisbon.Google Scholar
  17. Chiostrini, S., Galano, L., & Vignoli, A. (2000). On the determination of strength of ancient masonry walls via experimental tests. In Proceedings of 12 WCEE, Auckland, New Zealand, January 30–February 4, 2000.Google Scholar
  18. Chiostrini, S., Galano, L., & Vignoli, A. (2003). In situ shear and compression tests in ancient stone masonry walls of Tuscany, Italy. ASTM Journal of Testing and Evaluation, 31(4), 289–304.Google Scholar
  19. Chiostrini, S., & Vignoli, A. (1992). An experimental research program on the behavior of stone masonry structures. ASTM Journal of Testing and Evaluation, 20(3), 190–206.CrossRefGoogle Scholar
  20. Chiostrini, S., & Vignoli, A. (1994). In-situ determination of the strength properties of masonry walls by destructive shear and compression tests. Masonry International, 7(3), 87–96.Google Scholar
  21. Chopra, A. K., & Goel, R. K. (2004). A modal pushover analysis procedure to estimate seismic demands for unsymmetric-plan buildings. Earthquake Engineering and Structural Dynamics, 33, 903–927.CrossRefGoogle Scholar
  22. Corradi, M., Borri, A., & Vignoli, A. (2002a). Strengthening techniques tested on masonry structures struck by the Umbria-Marche earthquake of 1997–1998. Construction and Building Materials, 16(4), 229–239.CrossRefGoogle Scholar
  23. Corradi, M., Borri, A., & Vignoli, A. (2002b). Experimental study on the determination of strength of masonry walls. Construction and Building Materials, 17(5), 325–337.CrossRefGoogle Scholar
  24. Da Porto, F., Guidi, G., Garbin, E., & Modena, C. (2010). In-plane behavior of clay masonry walls: Experimental testing and finite-element modeling. Journal of Structural Engineering, 136(11), 1379–1392.CrossRefGoogle Scholar
  25. Del Coz Díaz, J. J., García Nieto, P. J., Martínez-Luengas, A. L., & Álvarez Rabanal, F. P. (2007). Evaluation of the damage in the vault and portico of the pre-Romanesque chapel of San Salvador de Valdediós using frictional contacts and the finite-element method. International Journal of Computer Mathematics, 84(3), 377–393.CrossRefGoogle Scholar
  26. Del Piero, G. (1984). Le costruzioni in muratura. Berlin, Heidelberg: Springer. (in Italian).Google Scholar
  27. DM96. (1996). Decreto Ministero dei Lavori Pubblici del 16 Gennaio 1996. Norme tecniche relative ai Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi. G.U. 5/2/1996, No. 29 (in Italian).Google Scholar
  28. DPCM. (2011). Direttiva del Presidente del Consiglio dei Ministri per la Valutazione e la riduzione del rischio sismico del patrimonio culturale con riferimento alle norme tecniche per le costruzioni di cui al decreto del Ministero delle infrastrutture e dei trasporti del 14 Gennaio 2008, G.U. 26/2/2011, No. 47 (in Italian).Google Scholar
  29. Drucker, D., & Prager, W. (1952). Soil mechanics and plastic analysis or limit design. Quarterly of Applied Mathematics, 10(2), 157–165.Google Scholar
  30. Eurocode 8 (1996) Design provisions for earthquake resistance of structures. Part 1–4: General rules—Strengthening and repair of buildings. ENV 1998-1-4: 1996. CEN, Brussels.Google Scholar
  31. Falasco, A., Lagomarsino, S., & Penna, A. (2006). On the use of pushover analysis for existing masonry buildings. In Proceeding of the First European Conference on Earthquake Engineering and Seismology, Geneva, Switzerland, September 3–8, 2006.Google Scholar
  32. Fioravanti, M., & Mecca, S. (Eds.). (2011). The safeguard of cultural heritage: A challenge from the past for the Europe of tomorrow. Florence: Firenze University Press.Google Scholar
  33. Gambarotta, L., & Lagomarsino, S. (1997). Damage models for the seismic response of brick masonry shear walls. Part I: The mortar joint model and its applications. Earthquake Engineering and Structural Dynamics, 26(4), 423–439.CrossRefGoogle Scholar
  34. Hansen, E., William, K., & Carol, I. (2001). A two-surface anisotropic damage/plasticity model for plain concrete. In Proceedings of Framcos-4 Conference 2001.Google Scholar
  35. ICOMOS (International Council on Monuments and Sites). (2001). Recommendations for the analysis, conservation and structural restoration of architectural heritage. International Scientific Committee for Analysis and Restoration of Structures of Architectural Heritage, Paris, 2001.Google Scholar
  36. Ivorra, S., Pallares, F. J., & Adam, J. M. (2009). Experimental and numerical results from the seismic study of a masonry bell tower. Advances in Structural Engineering, 12(9), 287–293.CrossRefGoogle Scholar
  37. Ivorra, S., Pallares, F. J., Adam, J. M., & Tomás, R. (2010). An evaluation of the incidence of soil subsidence on the dynamic behaviour of a Gothic bell tower. Engineering Structures, 32(8), 2318–2325.CrossRefGoogle Scholar
  38. Kim, S., & D’Amore, E. (1999). Push-over analysis procedures in earthquake engineering. Earthquake Spectra, 15(3), 417–434.CrossRefGoogle Scholar
  39. Leftheris, B. P., Stavroulaki, M. E., Sapounaki, A. C., & Stavroulakis, G. E. (2006). Computational mechanics for heritage structures. Southampton: WIT Press.Google Scholar
  40. Lourenço, P. B. (2005). Assessment, diagnosis and strengthening of Outeiro Church, Portugal. Construction and Building Materials, 19(8), 634–645.CrossRefGoogle Scholar
  41. Lourenço, P. B., Krakowiak, K. J., Fernandes, F. M., & Ramos, L. F. (2007). Failure analysis of Monastery of Jero´nimos, Lisbon: How to learn from sophisticated numerical models. Engineering Failure Analysis, 14, 280–300.CrossRefGoogle Scholar
  42. Lourenço, P. B., & Oliveira, D. V. (2007). Improving the seismic resistance of masonry buildings: Concepts for cultural heritage and recent developments in structural analysis. In Atti del XII Convegno Nazionale ANIDIS L’Ingegneria Sismica in Italia, Pisa, 2007.Google Scholar
  43. Lourenço, P. B., & Pina-Henriques, J. (2006). Validation of analytical and continuum numerical methods for estimating the compressive strength of masonry. Computers & Structures, 84, 1977–1989.CrossRefGoogle Scholar
  44. Lucibello, G., Brandonisio, G., Mele, E., & De Luca, A. (2013). Seismic damage and performance of Palazzo Centi after L’Aquila earthquake: A paradigmatic case study of effectiveness of mechanical steel ties. Engineering Failure Analysis, 34, 407–430.CrossRefGoogle Scholar
  45. NTC. (2008). Decreto Ministero delle Infrastrutture e dei Trasporti 14 Gennaio 2008. Nuove Norme Tecniche per le Costruzioni, G.U. 4/2/2008, No. 29 (In Italian).Google Scholar
  46. OPCM. (2003). Ordinanza Presidente del Consiglio dei Ministri 3274/2003. Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica. G.U. 8/5/2003, No. 105 (In Italian).Google Scholar
  47. Ramos, L. F., & Lourenço, P. B. (2004). Modeling and vulnerability of historical city centers in seismic areas: A case study in Lisbon. Engineering Structures, 26, 1295–1310.CrossRefGoogle Scholar
  48. Romera, L. E., Hernandez, S., & Reinosa, J. M. (2008a). Numerical characterization of the structural behaviour of the Basilica of Pilar in Zaragoza (Spain). Part 1: Global and local models. Advances in Engineering Software, 39, 301–314.CrossRefGoogle Scholar
  49. Romera, L. E., Hernandez, S., & Reinosa, J. M. (2008b). Numerical characterization of the structural behaviour of the Basilica of Pilar in Zaragoza (Spain). Part 2: Constructive process effects. Advances in Engineering Software, 39, 315–326.CrossRefGoogle Scholar
  50. Salari, M. R., Saeb, S., Willam, K. J., Patchet, S. J., & Carrasco, R. C. (2004). A coupled elasto-plastic damage model for geo-materials. Computer Methods in Applied Mechanics and Engineering, 193(27–29), 2625–2643.CrossRefGoogle Scholar
  51. Siviero, E., Barbieri, A., & Foraboschi, P. (1997). Lettura strutturale delle costruzioni. Milano: Città Studi Edizioni. (in Italian).Google Scholar
  52. Taliercio, A., & Binda, L. (2008). The Basilica of San Vitale in Ravenna: Investigation on the current structural faults and their mid-term evolution. Journal of Cultural Heritage, 8, 99–118.CrossRefGoogle Scholar
  53. Theodossopoulos, D., & Sinha, B. (2013). A review of analytical methods in the current design processes and assessment of performance of masonry structures. Construction and Building Materials, 41, 990–1001.CrossRefGoogle Scholar
  54. William, K. J., & Warnke, E. D. (1975). Constitutive model for the triaxial behaviour of concrete. In Proceeding of the International Association for Bridge and Structural Engineering, Bergamo, Italy, 1975.Google Scholar
  55. Zucchini, A., & Lourenco, P. (2007). Mechanics of masonry in compression: Results from a homogenisation approach. Computers & Structures, 85(3–4), 193–204.CrossRefGoogle Scholar
  56. Zucchini, A., & Lourenço, P. B. (2002). A micro-mechanical model for the homogenisation of masonry. International Journal of Solids and Structures, 39, 3233–3255.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Civil and Environmental Engineering (DICeA)University of FlorenceFlorenceItaly

Personalised recommendations