Skip to main content

Model-Driven Evaluation of the Emergent Complexity of Cooperative Work Based on Effective Measure Complexity

  • Chapter
Product Development Projects

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

In this book, the main improvement on Grassberger’s original definition of the effective measure complexity EMC, which is based on classic information-theoretic quantities like Shannon’s information entropy that were developed to evaluate stochastic processes with discrete states, is the generalization of the theory and measures to continuous-state processes like that generated by the previously introduced VAR(1) model of cooperative work according to state Eq. 8. However, Li and Xie (1996), Bialek et al. (2001), de Cock (2002), Bialek (2003), Ellison et al. (2009) and others have already pioneered the generalization of Grassberger’s concepts toward continuous systems in their works, and we can build upon their results. Their analyses show that we must primarily consider the so-called “differential block entropy” (Eq. 233) and the corresponding continuous-type mutual information (Eq. 234) as basic information-theoretic quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ay, N., Bernigau, H., Der, R., Prokopenko, M.: Information driven self-organization: the dynamic system approach to autonomous robot behavior. Theory Biosci. Special issue on Guided Self-Organisation (GSO-2010), 131, 161–179 (2012)

    Google Scholar 

  • Ball, R.C., Diakonova, M., MacKay, R.S.: Quantifying emergence in terms of persistent mutual information. (2010). Advances in Complex Systems 13(1), 327–338 (2010)

    Google Scholar 

  • Bialek, W.: Some background on information theory. Unpublished Working Paper. Princeton University, (2003)

    Google Scholar 

  • Bialek, W., Nemenman, I., Tishby, N.: Predictability, complexity and learning. Neural Comput. 13(1), 2409–2463 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Billingsley, P.: Probability and Measure, 3rd edn. Wiley, New York, NY (1995)

    MATH  Google Scholar 

  • Boets, J., de Cock, K., de Moor, B.: A mutual information based distance for multivariate Gaussian processes. In: Chiuo, A., et al. (eds.) Modeling, Estimation and Control, LNCIS 364, pp. 15–33. Springer, Berlin (2007)

    Chapter  Google Scholar 

  • Brockwell, P.J., Davis, R.A.: Time Series: Theory and Methods, 2nd edn. Springer, New York, NY (1991)

    Book  Google Scholar 

  • Cohen, J.: Statistical Power Analysis for the Behavioral Sciences, 2nd edn. Lawrence Erlbaum Associates, Mahwah, NJ (1988)

    MATH  Google Scholar 

  • Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley and Sons, New York, NY (1991)

    Book  MATH  Google Scholar 

  • Creutzig, F.: Sufficient encoding of dynamical systems—from the grasshopper auditory system to general principles. Ph.D. thesis, Humboldt-Universität zu Berlin (2008)

    Google Scholar 

  • Crutchfield, J.P., Ellison, C.J., James, R.G., Mahoney, J.R.: Synchronization and control in intrinsic and designed computation: an information-theoretic analysis of competing models of stochastic computation. Santa Fe Institute Working Paper 2010-08-015, (2010)

    Google Scholar 

  • Crutchfield, J.P., Ellison, C.J., Riechers, P.M.: Exact complexity: the spectral decomposition of intrinsic computation. Santa Fe Institute Working Paper 2013-09-028, (2013)

    Google Scholar 

  • de Cock, K.D.: Principal angles in system theory, information theory and signal processing. Ph.D. thesis, Katholieke Universiteit Leuven (2002)

    Google Scholar 

  • DelSole, T., Tippett, M.K.: Predictability: recent insights from information theory. Rev. Geophys. 45, RG4002 (2007)

    Article  Google Scholar 

  • Desai, U.N., Pal, D.: A transformation approach to stochastic model reduction. IEEE Trans. Autom. Control 29(12), 1097–1100 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Ellison, C.J., Mahoney, J.R., Crutchfield, J.P.: Prediction, retrodiction, and the amount of information stored in the present. Santa Fe Institute Working Paper 2009-05-017, (2009)

    Google Scholar 

  • Grassberger, P.: Toward a quantitative theory of self-generated complexity. Int. J. Theor. Phys. 25(9), 907–938 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002)

    Book  MATH  Google Scholar 

  • Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge U.K (1985)

    Book  MATH  Google Scholar 

  • Hotelling, H.: The most predictable criterion. J. Educ. Psychol. 26, 139–142 (1935)

    Article  Google Scholar 

  • James, R., Ellison, C.J., Crutchfield, J.P.: Anatomy of a bit: information in a time series observation. Santa Fe Institute Working Paper 2011-05-019, (2011)

    Google Scholar 

  • Kraskov, A., Stögbauer, H., Grassberger, P.: Estimating Mutual Information. (2004). arXiv:cond-mat/0305641v1 [cond-mat.stat-mech]

    Google Scholar 

  • Krattenthaler, C.: Advanced determinant calculus: A complement. Linear Algebra Appl. 411(2), 68–166 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Lancaster, P., Tismenetsky, M.: The Theory of Matrices, 2nd edn. Academic, Orlando, FL (1985)

    MATH  Google Scholar 

  • Li, L.: Some notes on mutual information between past and future. J. Time Ser. Anal. 27(2), 309–322 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, L., Xie, Z.: Model selection and order determination for time series by information between the past and the future. J. Time Ser. Anal. 17(1), 65–84 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Lütkepohl, H.: Comparison of criteria for estimating the order of a vector autoregressive process. J. Time Ser. Anal. 6, 35–52 (1985)

    Article  MathSciNet  Google Scholar 

  • Lütkepohl, H.: New Introduction to Multiple Time Series Analysis. Springer, Berlin (2005)

    Book  MATH  Google Scholar 

  • Marzen, S., Crutchfield, J.P.: Circumventing the curse of dimensionality in prediction: causal rate-distortion for infinite-order Markov processes. Santa Fe Institute Working Paper 2014-12-047, (2014)

    Google Scholar 

  • McGinnie, B.P.: A balanced view of system identification. PhD thesis, Cambridge University, Cambridge, UK (1994)

    Google Scholar 

  • Mori, T., Fukuma, N., Kuwahara, M.: On the discrete Lyapunov matrix equation. IEEE Trans. Autom. Control 27(2), 463–464 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Neumaier, A., Schneider, T.: Estimation of parameters and Eigenmodes of multivariate autoregressive models. ACM Trans. Math. Softw. 27, 27–57 (2001)

    Article  MATH  Google Scholar 

  • Papoulis, A., Pillai, S.U.: Probability, Random Variables and Stochastic Processes. McGraw-Hill, Boston, MA (2002)

    Google Scholar 

  • Puri, N.N.: Fundamentals of Linear Systems for Physical Scientists and Engineers. CRC Press, Boca Raton, FL (2010)

    Google Scholar 

  • Schneider, T., Griffies, S.M.: A conceptual framework for predictability studies. J. Clim. 12, 3133–3155 (1999)

    Article  Google Scholar 

  • Still, S.: Information bottleneck approach to predictive inference. Entropy 16(1), 968–989 (2014)

    Article  MathSciNet  Google Scholar 

  • Van Overschee, P., de Moor, B.: Subspace Identification for Linear Systems: Theory, Implementations, Applications. Kluwer Academic Publishers, Boston, MA (1996)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schlick, C., Demissie, B. (2016). Model-Driven Evaluation of the Emergent Complexity of Cooperative Work Based on Effective Measure Complexity. In: Product Development Projects. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-21717-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21717-8_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21716-1

  • Online ISBN: 978-3-319-21717-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics