# A Type-Directed Approach to Program Repair

- 2 Citations
- 1 Mentions
- 1.3k Downloads

## Abstract

## Keywords

Repair Program Repair Algorithm Graphene Synthesis Java Standard Library Increase Software Reliability## 1 Introduction

While coding, a developer often knows the approximate structure of the expression she is working on, but may yet write code that does not compile because some fragments are not well-typed. Such mistakes occur mainly because modern libraries often evolve into complex application programming interfaces (APIs) that provide a large number of declarations. It is difficult, if not impossible, to learn the specifics of every declaration and its utilization.

In this paper we propose an approach that takes ill-typed expressions and automatically suggests several well-typed corrections. The suggested code snippets follow the structure outlined in the original expression as closely as possible, and are ranked based on their similarity to the original code. This approach can also be seen as code synthesis. In fact, our proposed method extends the synthesis functionality described in [3, 6, 10]. In light of program repair, plain expression synthesis can be seen as a repair of the empty expression.

We have implemented an early prototype of our algorithm, and empirically tested it on synthesis and repair benchmarks. The initial evaluation strongly supports the idea of a graph-based type-directed approach to code repair and snippet synthesis. Compared to the results reported in [3], our approach outperforms on similar benchmarks, sometimes by several orders of magnitude, while still producing high-quality results.

## 2 Related Work

Our work is largely inspired by two synthesis tools: Prospector [6] and InSynth [3, 4]. Prospector is a tool for synthesizing code snippets containing only unary API methods. The basic synthesis algorithm used in [6] encodes method signatures using a graph. Although we also encode function information in a graph structure, our synthesis graph is more general. As explained in Sect. 4.1, we distinguish nodes into types and functions, as opposed to just types. In a way, the connections to each function node models its succinct type as described in [3]. While our approach acts as a generalization of both these tools, we significantly extend their capability. Our algorithm can repair ill-typed expressions, as well.

Debugging and locating errors in code [1, 8] play an important role in the process of increasing software reliability. While our approach suggests repairs based only on a given ill-typed expression and its environment, other tools that tackle this problem [2, 5, 7, 9] additionally require test cases, code contracts and/or symbolic execution.

## 3 Motivating Example: Correcting Multiple Errors

In this section, we show how our algorithm efficiently repairs ill-typed expressions. Sometimes, such expressions might poorly reflect the structure of the desired expression, while still retaining other useful information. This is the case when the correct structure is obscured by passing too many or too few arguments to a function, or by passing them in the wrong order.

## 4 The Algorithm

### 4.1 Synthesis Graph Construction

Our algorithm operates by searching through a data structure we call the *synthesis graph*. Each node of the synthesis graph corresponds to either a value-producing language entity, such as a function, variable, constant, or literal, or to a type in the language. We therefore divide nodes into two sets \(V_t\) (type nodes) and \(V_f\) (function nodes). Since variables, constants, and literals can be considered functions taking the empty set to their value, they belong to \(V_f\). To every function node, there is an incoming edge from the type it produces, and for each distinct type that the function takes as an argument, there is an outgoing edge from the function node to the type node. Importantly, this means that a function on three input parameters of the same type will have out-degree exactly one.

In addition, we assign to every edge a cost, which is a subjective measure that guides the search towards desirable traits. Such traits could include smaller expressions or lower memory usage, similar to [4]. The cost of an expression is defined to be an accumulation of the costs of the edges it includes.

### 4.2 Synthesis Procedure

*N*.

*N*is the number of expressions to synthesize, and \(C_{\max }\) is an upper bound on the cost of an expression. The synthesis algorithm returns a list of expressions of type \(\tau \). The first two steps can be done using Dijkstra’s algorithm. The types in \(V_t'\) are explored in reverse order to avoid performing expensive recomputations. The loop finds

*N*expressions of type \(\sigma \) with the shortest cost-distance to \(\tau \) in \(G'\) and stores them in snips. This way, GetExpressions is able to reuse these computations without reducing the search space.

Next we describe the GetExpressions procedure, whose task is to find the *N* best snippets of type \(\tau \) in \(G'\) within a prescribed cost bound \(C_{now}\). The procedure operates recursively, and it checks the snips table to see whether it can reuse the existing computations. To compute candidates for \(\tau \in V_t\), the procedure looks at its outgoing neighbors, which are all functions whose output is of type \(\tau \). For each function that does not immediately break the cost constraint, GetExpressions attempts to synthesize subexpressions for each of its arguments recursively. This only needs to be done once for each type. Then, for every possible set of arguments to the function, it adds the allowable expressions to the results. Furthermore, it pushes out the worst few results if the size of the set would exceed *N*.

### 4.3 Repair Algorithm

Finally, we describe the repair algorithm, Algorithm 2. The key step in our approach is biasing the previously-described synthesis procedures towards the correctly-typed subexpressions of the broken expression. The intuition for this is that the search should be directed to favor those components that the programmer intended to use. To do this, we adjust the Cost function used by GetExpressions to assign the lowest possible cost to the well-typed subexpressions. Informally, we call these zero-cost subexpressions “reinforced”. This lowers the weights of results that contain these expressions, thus improving their ranking among the returned results.

This scheme has a few advantages: first, it will very strongly prefer those expressions that occurred as part of the given incorrect expression; second, in cases where more than one of the same type is required, it will favor using multiple, distinct subexpressions; and finally, if no expressions are given, then Cost actually remains unchanged.

With this modification in place, the repair algorithm proceeds from the bottom up. For each broken sub-expression in the input, we first reinforce each of its well-typed subexpressions and then initiate a synthesis for the desired type of the current subexpression. If any of its children are ill-typed, we recurse and repair them first.

*N*possible repairs, in our preliminary implementation, the first returned result was mostly the correct one, so we speculate that setting

*N*really low might be acceptable in a practical setting.

## 5 Preliminary Evaluation

We empirically evaluated our approach on benchmarks based on those found in [4]. Table 1 shows the summary of the results. The runtimes were measured on a standard university-supplied computer. For each benchmark, the best of 50 consecutive trials was recorded to account for variance in process scheduling, cache behavior, and JVM warmup. It was not uncommon to see four-to-five-fold speed increases between the best and the worst runtimes of the algorithm. This is due to the delay in program optimization afforded by Oracle’s JIT compiler.

Typical-use runtimes in various benchmarks. “Nodes” and “Edges” refer to the size of the searched subgraph, and “Rank” indicates the correct expression’s position among the results. The “size” refers to the number of subexpressions in the output expression. Each test case was initialized with a small environment consisting of five variables, and produced ten results.

Benchmark | Type | Size | Time (ms) | Nodes | Edges | Rank |
---|---|---|---|---|---|---|

SequenceInputStream | Synthesis | 3 | \(<\) 1 | 141 | 149 | 1 |

SequenceInputStream | Repair | 5 | 4 | – | – | 1 |

BufferedReader | Synthesis | 3 | 16 | 3119 | 4225 | 2 |

BufferedReader | Repair | 3 | 18 | – | – | 1 |

AudioClip (applet) | Synthesis | 3 | 27 | 6808 | 9291 | 2 |

InputStreamReader | Synthesis | 2 | 29 | 7064 | 9673 | 1 |

FileInputStream | Synthesis | 2 | 38 | 7832 | 10516 | 1 |

Matcher (regex) | Synthesis | 4 | 93 | 14505 | 24740 | 1 |

InputStream (from byte array) | Synthesis | 2 | 116 | 13163 | 20581 | 2 |

DeflaterInputStream | Repair | 8 | 380 | – | – | 1 |

These benchmarks show that repair is fast and accurate even in the face of multiple, difficult errors. The compressed stream example in Sect. 3 had several distinct errors: a missing parameter, two parameters transposed, and additional parameters passed to a function that did not accept them. Still, in three calls to the synthesis routine, our algorithm automatically corrected *all three* errors in around a third of a second.

Although it is impossible to test the full range of possible type errors everywhere they might appear in the Java standard library, if these speeds are indeed representative of the whole space of possible errors, then our repair algorithm is sufficiently fast to operate in an interactive setting.

## 6 Conclusions and Future Directions

We have seen that our algorithm efficiently subsumes the work done in [3, 6, 10] and extends it to the problem of program repair. Using our novel graph-theoretic approach, we efficiently solve instances of this problem to synthesize a correct expression from the salvageable parts of a broken one. We believe that the algorithm in its current state has two compelling uses. First, it can assist programmers in writing complex expressions. Second, it could be integrated into a compiler to provide enhanced error messages that not only point to errors, but offer ways to correct them. We believe that our algorithm will perform useful and effective repairs that are well-aligned with the developer’s intentions, even when the given ill-typed expression requires several steps to repair.

## Notes

### Acknowledgments

We thank Tihomir Gvero and Ivan Kuraj for early discussions about program repair.

## References

- 1.Chandra, S., Torlak, E., Barman, S., Bodik, R.: Angelic debugging. In: Proceedings of the 33rd International Conference on Software Engineering, ICSE 2011, pp. 121–130. ACM, New York, NY, USA (2011)Google Scholar
- 2.Goues, C.L., Nguyen, T., Forrest, S., Weimer, W.: GenProg: a generic method for automatic software repair. IEEE Trans. Software Eng.
**38**(1), 54–72 (2012)CrossRefGoogle Scholar - 3.Gvero, T., Kuncak, V., Kuraj, I., Piskac, R.: Complete completion using types and weights. In: PLDI, pp. 27–38 (2013)Google Scholar
- 4.Gvero, T., Kuncak, V., Piskac, R.: Interactive synthesis of code snippets. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 418–423. Springer, Heidelberg (2011) CrossRefGoogle Scholar
- 5.Kaleeswaran, S., Tulsian, V., Kanade, A., Orso, A.: Minthint: automated synthesis of repair hints. In: Proceedings of the 36th International Conference on Software Engineering, ICSE 2014, pp. 266–276. ACM, New York, NY, USA (2014)Google Scholar
- 6.Mandelin, D., Xu, L., Bodík, R., Kimelman, D.: Jungloid mining: helping to navigate the api jungle. In: PLDI (2005)Google Scholar
- 7.Nguyen, H.D.T., Qi, D., Roychoudhury, A., Chandra, S.: Semfix: program repair via semantic analysis. In: Notkin, D., Cheng, B.H.C., Pohl, K. (eds.) 35th International Conference on Software Engineering, ICSE 2013, San Francisco, CA, USA, 18–26 May 2013, pp. 772–781. IEEE/ACM (2013)Google Scholar
- 8.Pavlinovic, Z., King, T., Wies, T.: Finding minimum type error sources. In: Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems Languages & Applications, OOPSLA 2014, pp. 525–542. ACM, New York, NY, USA (2014)Google Scholar
- 9.Pei, Y., Wei, Y., Furia, C.A., Nordio, M., Meyer, B.: Code-based automated program fixing. In: Alexander, P., Pasareanu, C.S., Hosking, J.G. (eds.) 26th IEEE/ACM International Conference on Automated Software Engineering, ASE 2011, Lawrence, KS, USA, 6–10 November 2011, pp. 392–395. IEEE (2011)Google Scholar
- 10.Perelman, D., Gulwani, S., Ball, T., Grossman, D.: Type-directed completion of partial expressions. In: PLDI, pp. 275–286 (2012)Google Scholar