Skip to main content

Dynamics of Membrane Proteins and Lipid Bilayers

  • Conference paper

Abstract

Membrane proteins perform relevant physiological functions by means of intricate conformational changes in a hydrophobic environment. Lipid bilayers and embedded proteins, therefore, play a functional role in biomembranes, where the interplay of interactions keeps a delicate balance between cell barriers and selective transducers, transporters, pores, channels, etc. Molecular dynamics and experimental methods (e.g. X-ray diffraction, neutron scattering, nuclear magnetic resonance, infrared spectroscopy, dielectric relaxation spectroscopy, among others) encompass a set of tools to determine the relevant properties that make biomembranes so efficient for preserving life. In this chapter, I provide a perspective on studies that combine experimental methods and molecular dynamics approaches to decipher couplings of membrane proteins and lipid bilayers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Analysis performed on trajectories generated by Professor Martin B. Ulmschneider.

References

  1. Stansfeld P, Sansom MS (2011) Molecular simulation approaches to membrane proteins. Structure 19:1563–1572

    Article  Google Scholar 

  2. Tan S, Tan H, Chung M (2008) Membrane proteins and membrane proteomics. Proteomics 8:3924–3932

    Article  CAS  PubMed  Google Scholar 

  3. Wallin E, Von Heijne G (1998) Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 7:1029–1038

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50

    Article  CAS  PubMed  Google Scholar 

  5. Jewell SA (2011) Living systems and liquid crystals. Liq Cryst 38:1699–1714

    Article  CAS  Google Scholar 

  6. Veatch SL, Keller SL (2005) Seeing spots: complex phase behavior in simple membranes. Biochem Biophys Acta 1746:172–185

    Article  CAS  PubMed  Google Scholar 

  7. White SH, Wiener MC (1995) Determination of the structure of fluid lipid bilayer membranes. In: Disalvo EA, Simon SA (eds) Permeability and stability of lipid bilayers. CRC Press, Boca Raton, pp 1–19

    Google Scholar 

  8. Disalvo EA et al (2008) Structural and functional properties of hydrations and confined water in membrane interfaces. Biochim Biophys Acta 1778:2655–2670

    Article  CAS  PubMed  Google Scholar 

  9. Benz RW et al (2005) Experimental validation of molecular dynamics simulations of lipid bilayers: a new approach. Biophys J 88:805–817

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Mihailescu M et al (2011) Acyl-chain methyl distributions of liquid-ordered and -disordered membranes. Biophys J 100:1455–1462

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Blasie JK, Schoenborn BP, Zaccai G (1975) Direct methods for the analysis of lamellar neutron diffraction from oriented multilayers: a difference Patterson deconvolution approach. Brookhaven Symp Biol 27:III-58–III-67

    Google Scholar 

  12. Worcester DL (1988) Contrast variation and the versatility of deuterium in structural studies of biological macromolecules. J Appl Cryst 21:669–674

    Article  CAS  Google Scholar 

  13. Zaccai G (2012) Straight lines of neutron scattering in biology: a review of basic controls in SANS and EINS. Eur Biophys J 41:781–787

    Article  CAS  PubMed  Google Scholar 

  14. Sears VF (1986) Neutron scattering lengths and cross-sections. In: Sköld K, Price DL (eds) Neutron scattering. Part A. Academic, New York, pp 521–550

    Chapter  Google Scholar 

  15. Pastor RW, Mackerell AD (2011) Development of the CHARMM force field for lipids. J Phys Chem Lett 2:1526–1532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Ulmschneider JP, Ulmschneider MB (2009) United atom lipid parameters for combination with the optimized potentials for liquid simulations all-atom force field. J Chem Theory Comput 5:1803–1813

    Article  CAS  Google Scholar 

  17. Mihailescu M et al (2011) Structure and dynamics of cholesterol-containing polyunsaturated lipid membranes studied by neutron diffraction and NMR. J Membr Biol 239:63–71

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Ulmschneider MB, Sansom MSP, Di Nola A (2006) Evaluating tilt angles of membrane-associated helices: comparison of computational and NMR techniques. Biophys J 90:1650–1660

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Peters J et al (2013) Dynamics measured by neutron scattering correlates with the organization of bioenergetics complexes in natural membranes from hyperthermophile and mesophile bacteria. Eur Phys J E 36:78

    Article  CAS  PubMed  Google Scholar 

  20. Zaccai G (2011) Neutron scattering perspectives for protein dynamics. J Non-Cryst Solids 357:615–621

    Article  CAS  Google Scholar 

  21. Flenner E et al (2009) Subdiffusion and lateral diffusion coefficient of lipid atoms and molecules on phospholipid bilayers. Phys Rev E 79(011907):1–11

    Google Scholar 

  22. Khoshnood A, Jalali MA (2013) Anomalous diffusion of proteins in sheared lipid membranes. Phys Rev E 88(032705):1–7

    Google Scholar 

  23. Soubias O, Teague WE, Gawrisch K (2006) Evidence for specificity in lipid-rhodopsin interactions. J Biol Chem 281(44):33233–33241

    Article  CAS  PubMed  Google Scholar 

  24. Teague WE Jr et al (2013) Elastic properties of polyunsaturated phosphatidylethanolamines influence rhodopsin function. Faraday Discuss 161:383–395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Mihailescu M, Gawrisch K (2006) The structure of polyunsaturated lipid bilayers important for rhodopsin function: a neutron diffraction study. Biophys J 90(1):L04–L06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Henzler-Wildman KA et al (2007) A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nat Lett 450:913–916

    Article  CAS  Google Scholar 

  27. Lee AL, Wand J (2001) Microscopic origins of entropy, heat capacity and the glass transition in proteins. Nature 2001:501–504

    Article  Google Scholar 

  28. Benedetto A (2013) Protein dynamics by neutron scattering. Biophys Chem 182:16–22

    Article  CAS  PubMed  Google Scholar 

  29. Tarek M, Tobias DJ (2002) Role of protein-water hydrogen bond dynamics in the protein dynamical transition. Phys Rev Lett 88:138101

    Article  CAS  PubMed  Google Scholar 

  30. Heyden M, Tobias DJ (2013) Spatial dependence of protein-water collective hydrogen-bond dynamics. Phys Rev Lett 111:218101

    Article  PubMed  Google Scholar 

  31. Phillips R et al (2009) Emerging roles for lipids in shaping membrane-protein function. Nature 459:379–385

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Fitter J et al (1999) Internal molecular motions of bacteriorhodopsin: hydration-induced flexibility studied by quasielastic incoherent neutron scattering using oriented purple membranes. Proc Natl Acad Sci U S A 93:7600–7605

    Article  Google Scholar 

  33. Tobias DJ, Sengupta N, Tarek M (2009) Hydration dynamics of purple membranes. Faraday Discuss 141:99–116

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héctor Eduardo Jardón-Valadez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Jardón-Valadez, H.E. (2015). Dynamics of Membrane Proteins and Lipid Bilayers. In: Olivares-Quiroz, L., Guzmán-López, O., Jardón-Valadez, H. (eds) Physical Biology of Proteins and Peptides. Springer, Cham. https://doi.org/10.1007/978-3-319-21687-4_9

Download citation

Publish with us

Policies and ethics