Skip to main content

Modulation of Cholera Toxin Structure/Function by Hsp90

  • Conference paper
Physical Biology of Proteins and Peptides

Abstract

Cholera toxin (CT) is released into the extracellular environment, but the catalytic CTA1 subunit attacks its G protein target within the cytosol of an intoxicated cell. To access the cytosol, CT moves by vesicle carriers from the cell surface to the endoplasmic reticulum (ER). CTA1 then dissociates from the rest of the toxin and shifts to a disordered conformation that facilitates its passage into the cytosol through a pore in the ER membrane. We have found that CTA1 export to the cytosol requires the host cytosolic chaperone Hsp90. Loss of Hsp90 function trapped CTA1 in the ER, and Hsp90 was sufficient for in vitro export of CTA1 from the ER. Structural studies demonstrated Hsp90 will refold disordered CTA1. ATP hydrolysis by Hsp90 was required for both CTA1 refolding and CTA1 extraction from the ER, which suggests a ratchet mechanism for the chaperone-driven movement of CTA1 to the cytosol: the refolding of CTA1 as it emerges at the cytosolic face of the ER membrane would prevent the toxin from sliding back into the translocon pore and would thereby ensure the unidirectional movement of CTA1 from the ER to the cytosol. Hsp90 bound to the N-terminus of CTA1 and did not release CTA1 after refolding the toxin. The continued association of Hsp90 with CTA1 allowed the toxin to maintain an active conformation at 37 °C. Hsp90 thus plays two key roles CT intoxication: it couples toxin refolding with toxin extraction from the ER, and it maintains the cytosolic toxin in a functional conformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang RG, Scott DL, Westbrook ML, Nance S, Spangler BD, Shipley GG, Westbrook EM (1995) The three-dimensional crystal structure of cholera toxin. J Mol Biol 251:563–573

    Article  CAS  PubMed  Google Scholar 

  2. De Haan L, Hirst TR (2004) Cholera toxin: a paradigm for multi-functional engagement of cellular mechanisms (Review). Mol Membr Biol 21:77–92

    Article  PubMed  Google Scholar 

  3. Spangler BD (1992) Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin. Microbiol Rev 56:622–647

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Kopic S, Geibel JP (2010) Toxin mediated diarrhea in the 21st century: the pathophysiology of intestinal ion transport in the course of ETEC, V. cholerae and rotavirus infection. Toxins 2:2132–2157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Harris JB, LaRocque RC, Qadri F, Ryan ET, Calderwood SB (2012) Cholera. Lancet 379:2466–2476

    Article  PubMed Central  PubMed  Google Scholar 

  6. Wernick NLB, Chinnapen DJ-F, Cho JA, Lencer WI (2010) Cholera toxin: an intracellular journey into the cytosol by way of the endoplasmic reticulum. Toxins 2:310–325

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Mekalanos JJ, Collier RJ, Romig WR (1979) Enzymic activity of cholera toxin. II. Relationships to proteolytic processing, disulfide bond reduction, and subunit composition. J Biol Chem 254:5855–5861

    CAS  PubMed  Google Scholar 

  8. Khan HA, Mutus B (2014) Protein disulfide isomerase: a multifunctional protein with multiple physiological roles. Front Chem 2:1–9

    CAS  Google Scholar 

  9. Taylor M, Burress H, Banerjee T, Ray S, Curtis D, Tatulian SA, Teter K (2014) Substrate-induced unfolding of protein disulfide isomerase displaces the cholera toxin A1 subunit from its holotoxin. PLoS Pathog 10:e1003925

    Article  PubMed Central  PubMed  Google Scholar 

  10. Taylor M, Banerjee T, Ray S, Tatulian SA, Teter K (2011) Protein disulfide isomerase displaces the cholera toxin A1 subunit from the holotoxin without unfolding the A1 subunit. J Biol Chem 286:22090–22100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Pande AH, Scaglione P, Taylor M, Nemec KN, Tuthill S, Moe D, Holmes RK, Tatulian SA, Teter K (2007) Conformational instability of the cholera toxin A1 polypeptide. J Mol Biol 374:1114–1128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Guerriero CJ, Brodsky JL (2012) The delicate balance between secreted protein folding and endoplasmic reticulum-associated degradation in human physiology. Physiol Rev 92:537–576

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Hazes B, Read RJ (1997) Accumulating evidence suggests that several AB-toxins subvert the endoplasmic reticulum-associated protein degradation pathway to enter target cells. Biochemistry 36:11051–11054

    Article  CAS  PubMed  Google Scholar 

  14. Teter K (2013) Cholera toxin interactions with host cell stress proteins. In: Henderson B (ed) Moonlighting cell stress proteins in microbial infections. Springer, New York, pp 323–338

    Chapter  Google Scholar 

  15. Rodighiero C, Tsai B, Rapoport TA, Lencer WI (2002) Role of ubiquitination in retro-translocation of cholera toxin and escape of cytosolic degradation. EMBO Rep 3:1222–1227

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Lemus L, Goder V (2014) Regulation of endoplasmic reticulum-associated protein degradation (ERAD) by ubiquitin. Cells 3:824–847

    Article  PubMed Central  PubMed  Google Scholar 

  17. Kothe M, Ye Y, Wagner JS, De Luca HE, Kern E, Rapoport TA, Lencer WI (2005) Role of p97 AAA-ATPase in the retrotranslocation of the cholera toxin A1 chain, a non-ubiquitinated substrate. J Biol Chem 280:28127–28132

    Article  CAS  PubMed  Google Scholar 

  18. McConnell E, Lass A, Wojcik C (2007) Ufd1-Npl4 is a negative regulator of cholera toxin retrotranslocation. Biochem Biophys Res Commun 355:1087–1090

    Article  CAS  PubMed  Google Scholar 

  19. Zuehlke A, Johnson JL (2010) Hsp90 and co-chaperones twist the functions of diverse client proteins. Biopolymers 93:211–217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Solit DB, Chiosis G (2008) Development and application of Hsp90 inhibitors. Drug Discov Today 13:38–43

    Article  CAS  PubMed  Google Scholar 

  21. Haug G, Leemhuis J, Tiemann D, Meyer DK, Aktories K, Barth H (2003) The host cell chaperone Hsp90 is essential for translocation of the binary Clostridium botulinum C2 toxin into the cytosol. J Biol Chem 278:32266–32274

    Article  CAS  PubMed  Google Scholar 

  22. Ratts R, Zeng H, Berg EA, Blue C, McComb ME, Costello CE, vanderSpek JC, Murphy JR (2003) The cytosolic entry of diphtheria toxin catalytic domain requires a host cell cytosolic translocation factor complex. J Cell Biol 160:1139–1150

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Wang X, Venable J, LaPointe P, Hutt DM, Koulov AV, Coppinger J, Gurkan C, Kellner W, Matteson J, Plutner H, Riordan JR, Kelly JW, Yates JR 3rd, Balch WE (2006) Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis. Cell 127:803–815

    Article  CAS  PubMed  Google Scholar 

  24. Youker RT, Walsh P, Beilharz T, Lithgow T, Brodsky JL (2004) Distinct roles for the Hsp40 and Hsp90 molecular chaperones during cystic fibrosis transmembrane conductance regulator degradation in yeast. Mol Biol Cell 15:4787–4797

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Giodini A, Cresswell P (2008) Hsp90-mediated cytosolic refolding of exogenous proteins internalized by dendritic cells. EMBO J 27:201–211

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Taylor M, Navarro-Garcia F, Huerta J, Burress H, Massey S, Ireton K, Teter K (2010) Hsp90 is required for transfer of the cholera toxin A1 subunit from the endoplasmic reticulum to the cytosol. J Biol Chem 285:31261–31267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Taylor M, Banerjee T, VanBennekom N, Teter K (2012) Detection of toxin translocation into the host cytosol by surface plasmon resonance. J Vis Exp (59): e3686. doi:10.3791/3686

  28. Lencer WI, de Almeida JB, Moe S, Stow JL, Ausiello DA, Madara JL (1993) Entry of cholera toxin into polarized human intestinal epithelial cells. Identification of an early brefeldin A sensitive event required for A1-peptide generation. J Clin Invest 92:2941–2951

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Burress H, Taylor M, Banerjee T, Tatulian SA, Teter K (2014) Co- and post-translocation roles for Hsp90 in cholera intoxication. J Biol Chem 289:33644–33654

    Article  CAS  PubMed  Google Scholar 

  30. Peskin CS, Odell GM, Oster GF (1993) Cellular motions and thermal fluctuations: the Brownian ratchet. Biophys J 65:316–324

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Teter K, Jobling MG, Sentz D, Holmes RK (2006) The cholera toxin A13 subdomain is essential for interaction with ADP-ribosylation factor 6 and full toxic activity but is not required for translocation from the endoplasmic reticulum to the cytosol. Infect Immun 74:2259–2267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Murayama T, Tsai SC, Adamik R, Moss J, Vaughan M (1993) Effects of temperature on ADP-ribosylation factor stimulation of cholera toxin activity. Biochemistry 32:561–566

    Article  CAS  PubMed  Google Scholar 

  33. Banerjee T, Taylor M, Jobling MG, Burress H, Yang Z, Serrano A, Holmes RK, Tatulian SA, Teter K (2014) ADP-ribosylation factor 6 acts as an allosteric activator for the folded but not disordered cholera toxin A1 polypeptide. Mol Microbiol 94:898–912

    Article  CAS  PubMed  Google Scholar 

  34. Ray S, Taylor M, Banerjee T, Tatulian SA, Teter K (2012) Lipid rafts alter the stability and activity of the cholera toxin A1 subunit. J Biol Chem 287:30395–30405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Barth H (2011) Exploring the role of host cell chaperones/PPIases during cellular up-take of bacterial ADP-ribosylating toxins as basis for novel pharmacological strategies to protect mammalian cells against these virulence factors. Naunyn Schmiedebergs Arch Pharmacol 383:237–245

    Article  CAS  PubMed  Google Scholar 

  36. Massey S, Quinones B, Teter K (2011) A cell-based fluorescent assay to detect the activity of Shiga toxin and other toxins that inhibit protein synthesis. Methods Mol Biol 739:49–59

    Article  CAS  PubMed  Google Scholar 

  37. Spooner RA, Hart PJ, Cook JP, Pietroni P, Rogon C, Hohfeld J, Roberts LM, Lord JM (2008) Cytosolic chaperones influence the fate of a toxin dislocated from the endoplasmic reticulum. Proc Natl Acad Sci U S A 105:17408–17413

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Ampapathi RS, Creath AL, Lou DI, Craft JW Jr, Blanke SR, Legge GB (2008) Order-disorder-order transitions mediate the activation of cholera toxin. J Mol Biol 377:748–760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research in the Teter lab on CTA1-Hsp90 interactions has been supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under award numbers R01AI073783 and R01AI099493. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Teter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Taylor, M., Britt, C.B.T., Fundora, J., Teter, K. (2015). Modulation of Cholera Toxin Structure/Function by Hsp90. In: Olivares-Quiroz, L., Guzmán-López, O., Jardón-Valadez, H. (eds) Physical Biology of Proteins and Peptides. Springer, Cham. https://doi.org/10.1007/978-3-319-21687-4_4

Download citation

Publish with us

Policies and ethics