Skip to main content

Thermodynamics and Kinetics of Amyloid Aggregation from Atomistic Simulations

  • Conference paper
Physical Biology of Proteins and Peptides
  • 924 Accesses

Abstract

A major cause for cellular toxicity involved in the onset of several neurodegenerative diseases is the aberrant aggregation of peptides or proteins into oligomers and eventually fibrils. In the case of Alzheimer’s disease, the main aggregating peptide is the amyloid β-peptide with two main alloforms of 40 (Aβ40) and 42 (Aβ42) amino acids. Numerous experimental studies have shown that early oligomers on-pathway to fibril formation are toxic, with Aβ42 showing a higher toxicity than Aβ40. To explore the aggregation mechanisms and differences in the oligomeric conformations we follow the aggregation of Aβ40 and Aβ42 from isolated monomers using all-atom molecular dynamics simulations. We describe the kinetics of aggregation and differences in the pathways arising from sequence differences using transition networks.This chapter is partly adapted from Barz et al. (J Phys Chem B 118(4):1003, 2014; Chem Commun 50:5373, 2014) with permission from the American Chemical Society and The Royal Society of Chemistry, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hardy J, Selkoe DJ (2002) Science 297(5580):353

    Article  CAS  PubMed  Google Scholar 

  2. Kirkitadze MD, Bitan G, Teplow DB (2002) J Neurosci Res 69(5):567

    Article  CAS  PubMed  Google Scholar 

  3. Silveira JR, Raymond GJ, Hughson AG, Race RE, Sim VL, Hayes SF, Caughey B (2005) Nature 437(7056):257

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Haass C, Selkoe DJ (2007) Nat Rev Mol Cell Biol 8(2):101

    Article  CAS  PubMed  Google Scholar 

  5. Klein WL, Stine WB, Teplow DB (2004) Neurobiol Aging 25(5):569

    Article  CAS  PubMed  Google Scholar 

  6. Bitan G, Kirkitadze MD, Lomakin A, Vollers SS, Benedek GB, Teplow DB (2003) Proc Natl Acad Sci USA 100(1):330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Urbanc B, Betnel M, Cruz L, Bitan G, Teplow DB (2010) J Am Chem Soc 132:4266

    Article  CAS  PubMed  Google Scholar 

  8. Barz B, Urbanc B (2012) PLoS ONE 7(4):e34345

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Melquiond A, Dong X, Mousseau N, Derreumaux P (2008) Curr Alzheimer Res 5(3):244

    Article  CAS  PubMed  Google Scholar 

  10. Sekijima M, Motono C, Yamasaki S, Kaneko K, Akiyama Y (2003) Biophys J 85(2):1176

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Balbirnie M, Grothe R, Eisenberg DS (2001) Proc Natl Acad Sci USA 98(5):2375

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Wales DJ (2010) Curr Opin Struc Biol 20(1):3

    Article  CAS  Google Scholar 

  13. Strodel B, Whittleston CS, Wales DJ (2007) J Am Chem Soc 129(51):16005

    Article  CAS  PubMed  Google Scholar 

  14. Becker OM, Karplus M (1997) J Chem Phys 106(4):1495

    Article  CAS  Google Scholar 

  15. Wales DJ, Miller MA, Walsh TR (1998) Nature 394(6695):758

    Article  CAS  Google Scholar 

  16. Krivov SV, Karplus M (2004) Proc Natl Acad Sci USA 101(41):14766

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Rao F, Karplus M (2010) Proc Natl Acad Sci 107(20):9152

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Baba A, Komatsuzaki T (2007) Proc Natl Acad Sci USA 104(49):19297

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Gfeller D, Rios PDL, Caflisch A, Rao F (2007) Proc Natl Acad Sci USA 104(6):1817

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Barz B, Wales DJ, Strodel B (2014) J Phys Chem B 118(4):1003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Barz B, Olubiyi OO, Strodel B (2014) Chem Commun 50:5373

    Article  CAS  Google Scholar 

  22. Riccardi L, Nguyen PH, Stock G (2012) J Chem Theory Comput 8(4):1471

    Article  CAS  Google Scholar 

  23. Ford LR, Fulkerson DR (1956) Canad J Math 8(0):399

    Article  Google Scholar 

  24. Krivov SV, Karplus M (2002) J Chem Phys 117(23):10894

    Article  CAS  Google Scholar 

  25. Gomory RE, Hu TC (1961) J Soc Ind Appl Math 9(4):551

    Article  Google Scholar 

  26. Nasica-Labouze J, Mousseau N (2012) PLoS Comput Biol 8(11):e1002782

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Nasica-Labouze J, Meli M, Derreumaux P, Colombo G, Mousseau N (2011) PLoS Comput Biol 7(5):e1002051

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Cheon M, Chang I, Hall CK (2011) Biophys J 101(10):2493

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Osborne KL, Bachmann M, Strodel B (2013) Proteins 81(7):1141

    Article  CAS  PubMed  Google Scholar 

  30. Gsponer J, Haberthür U, Caflisch A (2003) Proc Natl Acad Sci USA 100(9):5154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Vitagliano L, Esposito L, Pedone C, De Simone A (2008) Biochem Biophys Res Commun 377(4):1036

    Article  CAS  PubMed  Google Scholar 

  32. Nguyen PH, Li MS, Stock G, Straub JE, Thirumalai D (2007) Proc Natl Acad Sci USA 104(1):111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Berendsen HJC, Postma JPM, Gunsteren WFV, Hermans J (1981) In: B. Pullman Intermolecular forces, no. 14 in The Jerusalem Symposia on Quantum Chemistry and Biochemistry (Springer, The Netherlands), pp 331–342

    Google Scholar 

  34. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) J Chem Theory Comput 4(3):435

    Article  CAS  Google Scholar 

  35. Scott WRP, Hnenberger PH, Tironi IG, Mark AE, Billeter SR, Fennen J, Torda AE, Huber T, Krger P, van Gunsteren WF (1999) J Phys Chem A 103(19):3596

    Article  CAS  Google Scholar 

  36. Feenstra KA, Hess B, Berendsen HJC (1999) J Comput Chem 20(8):786

    Article  CAS  Google Scholar 

  37. Bussi G, Donadio D, Parrinello M (2007) J Chem Phys 126(1), 014101

    Article  PubMed  Google Scholar 

  38. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) J Chem Phys 81(8):3684

    Article  CAS  Google Scholar 

  39. Darden T, York D, Pedersen L (1993) J Chem Phys 98(12):10089

    Article  CAS  Google Scholar 

  40. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) J Chem Phys 103(19):8577

    Article  CAS  Google Scholar 

  41. Klimov DK, Thirumalai D (2003) Structure 11(3):295

    Article  CAS  PubMed  Google Scholar 

  42. Frishman D, Argos P (1995) Proteins 23:566

    Article  CAS  PubMed  Google Scholar 

  43. Carter P, Andersen CA, Rost B (2003) Nucleic Acids Res 31:3293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Dima R, Thirumalai D (2002) Protein Sci 11(5):1036

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Brandes U, Wagner D (2003) Graph drawing software. Springer, New York, pp 321–340

    Google Scholar 

  46. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14(1):33

    Article  CAS  PubMed  Google Scholar 

  47. Colletier JP, Laganowsky A, Landau M, Zhao M, Soriaga AB, Goldschmidt L, Flot D, Cascio D, Sawaya MR, Eisenberg D (2011) Proc Natl Acad Sci USA 108(41):16938

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Berhanu WM, Hansmann UHE (2012) Protein Sci 21(12):1837

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Laganowsky A, Liu C, Sawaya MR, Whitelegge JP, Park J, Zhao M, Pensalfini A, Soriaga AB, Landau M, Teng PK, Cascio D, Glabe C, Eisenberg D (2012) Science 335(6073):1228

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Liu C, Zhao M, Jiang L, Cheng PN, Park J, Sawaya MR, Pensalfini A, Gou D, Berk AJ, Glabe CG, Nowick J, Eisenberg D (2012) Proc Natl Acad Sci USA 109(51):20913

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Berhanu WM, Hansmann UHE (2013) Proteins 81(9):1542

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Xie L, Luo Y, Wei G (2013) J Phys Chem B 117(35):10149

    Article  CAS  PubMed  Google Scholar 

  53. Mehta AK, Lu K, Childers WS, Liang Y, Dublin SN, Dong J, Snyder JP, Pingali SV, Thiyagarajan P, Lynn DG (2008) J Am Chem Soc 130(30):9829

    Article  CAS  PubMed  Google Scholar 

  54. Reddy AS, Chopra M, de Pablo JJ (2010) Biophys J 98(6):1038

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Hwang W, Zhang S, Kamm RD, Karplus M (2004) Proc Natl Acad Sci USA 101(35):12916

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Meli M, Morra G, Colombo G (2008) Biophys J 94(11):4414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Zhang Z, Chen H, Bai H, Lai L (2007) Biophys J 93(5):1484

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Berryman JT, Radford SE, Harris SA (2009) Biophys J 97(1):1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Park J, Kahng B, Hwang W (2009) PLoS Comput Biol 5(9):e1000492

    Article  PubMed Central  PubMed  Google Scholar 

  60. Collins SR, Douglass A, Vale RD, Weissman JS (2004) PLoS Biol 2(10):e321

    Article  PubMed Central  PubMed  Google Scholar 

  61. Narayanan S, Walter S, Reif B (2006) Chem BioChem 7(5):757

    CAS  Google Scholar 

  62. Klein WL, Krafft GA, Finch CE (2001) Trends Neurosci 24(4):219

    Article  CAS  PubMed  Google Scholar 

  63. Ono K, Condron MM, Teplow DB (2009) Proc Natl Acad Sci USA 106(35):14745

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Ahmed M, Davis J, Aucoin D, Sato T, Ahuja S, Aimoto S, Elliott JI, Van Nostrand WE, Smith SO (2010) Nat Struct Mol Biol 17(5):561

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Benilova I, Karran E, De Strooper B (2012) Nat Neurosci 15(3):349

    Article  CAS  PubMed  Google Scholar 

  66. Cohen SIA, Linse S, Luheshi LM, Hellstrand E, White DA, Rajah L, Otzen DE, Vendruscolo M, Dobson CM, Knowles TPJ (2013) Proc Natl Acad Sci USA 201218402

    Google Scholar 

  67. Stroud JC, Liu C, Teng PK, Eisenberg D (2012) Proc Natl Acad Sci USA 109(20):7717

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the computing time granted on the supercomputer JUROPA at Jülich Supercomputing Centre. We thank Prof. David J. Wales and Dr. Olujide O. Olubiyi for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan Barz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Barz, B., Strodel, B. (2015). Thermodynamics and Kinetics of Amyloid Aggregation from Atomistic Simulations. In: Olivares-Quiroz, L., Guzmán-López, O., Jardón-Valadez, H. (eds) Physical Biology of Proteins and Peptides. Springer, Cham. https://doi.org/10.1007/978-3-319-21687-4_2

Download citation

Publish with us

Policies and ethics