An Overview of Treatment for Cervical Cancer with Emphasis on Immune Cell-Based Therapies

  • Samuel J. K. Abraham
  • Hiroshi Terunuma
  • Vidyasagar Devaprasad Dedeepiya
  • Sumana Premkumar
  • Senthilkumar Preethy

Abstract

Cervical cancer, the third most common cancer in women worldwide, has an incidence of 80 % in the developing countries. Relatively, the women in developing nations are diagnosed at an advanced stage of the disease due to disparities in screening programs and other socio-economic factors. Although surgery and/or chemo, radiotherapies are indicated for early stage cervical cancers, in the advanced stages, palliative management continues to be the mainstay approach. Recent approaches exploring targeted therapies that act on receptors, signalling pathways, molecules deserve a mention. Autologous immune-cell-based immunotherapies for cancer have been in clinical practice for more than three decades in countries like Japan for various solid tumors including cervical cancer. The cell based immunotherapies employ dendritic Cells, γδ T cells (gamma delta T cells) natural killer (NK) cells, NKT cells, activated T lymphocytes, cytotoxic T lymphocytes (CTLs) and lymphokine activated killer (LAK) cells. NK cells are of particular interest due to their rapid response against cancer cells and virus-infected cells even without being sensitized to antigens to kill cells that are missing the “self” markers of the major histocompatibility complex (MHC) class I. With human papilloma virus (HPV) being associated with virtually all the cases of cervical cancer, NK cell immunotherapy gathers more importance as it acts as a common weapon against the virus and cancer cells. With vaccination against HPV now being available, immunological considerations in cervical cancer gain significance and form a major arena for future research. This chapter will provide an overview on the existing treatment options for cervical cancer with special emphasis on the cell-based immunotherapies.

References

  1. 1.
    Hajdu SI (2004) Greco-Roman thought about cancer. Cancer 100:2048–2051CrossRefPubMedGoogle Scholar
  2. 2.
    Khaled HM (2006) Breast cancer at diagnosis in women of Africa and the Middle East. In: Williams CKO, Olopade OI, Falkson CI (eds) Breast cancer in women of African descent. Springer, Dordrecht, pp 81–90. doi:10.1007/978-1-4020-3664-4_5
  3. 3.
    Globocan (2008) Cancer fact sheet (cited 24 Jan 2014). Available from: http://globocan.iarc.fr/factsheets/cancers/cervix.asp
  4. 4.
    Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, Snijders PJ, Peto J, Meijer CJ, Muñoz N (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189:12–19CrossRefPubMedGoogle Scholar
  5. 5.
    Bosch FX, Lorincz A, Muñoz N, Meijer CJ, Shah KV (2002) The causal relation between human papillomavirus and cervical cancer. J Clin Pathol 55:244–265CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Franco EL, Duarte-Franco E, Ferenczy A (2001) Cervical cancer: epidemiology, prevention and the role of human papillomavirus infection. Can Med Assoc J 164:1017–1025Google Scholar
  7. 7.
    Burd EM (2003) Human papillomavirus and cervical cancer. Clin Microbiol Rev 16:1–17CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
  9. 9.
    Denny L, Hacker NF, Gori J, Jones HW III, Ngan HYS, Pecorelli S (2000) Staging classifications and clinical practice guidelines for gynaecological cancers. FIGO Committee on Gynecologic Oncology. Int J Gynecol Obstet 70:207–312, [cited 24 Jan 2014]. Available from: http://www.figo.org/files/figo-corp/docs/staging_booklet.pdf CrossRefGoogle Scholar
  10. 10.
    Petsuksiri J, Jaishuen A, Pattaranutaporn P, Chansilpa Y (2012) Advanced imaging applications for locally advanced cervical cancer. Asian Pac J Cancer Prev 13:1713–1718CrossRefPubMedGoogle Scholar
  11. 11.
    Information from National Cancer Institute (cited 24 Jan 2014). Available from: http://www.cancer.gov/types/cervical/pap-hpv-testing-fact-sheet. Reviewed 9 Sep 2014
  12. 12.
    Canavan TP, Doshi NR (2000) Cervical cancer. Am Fam Physician 61:1369–1376PubMedGoogle Scholar
  13. 13.
    Keys HM, Bundy BN, Stehman FB, Muderspach LI, Chafe WE, Suggs CL 3rd, Walker JL, Gersell D (1999) Cisplatin, radiation, and adjuvant hysterectomy compared with radiation and adjuvant hysterectomy for bulky stage IB cervical carcinoma. N Engl J Med 340:1154–1161, Erratum in: N Engl J Med 1999; 341:708CrossRefPubMedGoogle Scholar
  14. 14.
    Rose PG, Bundy BN, Watkins EB, Thigpen JT, Deppe G, Maiman MA, Clarke-Pearson DL, Insalaco S (1999) Concurrent cisplatin-based radiotherapy and chemotherapy for locally advanced cervical cancer. N Engl J Med 340:1144–1153, Erratum in: N Engl J Med 1999; 341 :708CrossRefPubMedGoogle Scholar
  15. 15.
    Morris M, Eifel PJ, Lu J, Grigsby PW, Levenback C, Stevens RE, Rotman M, Gershenson DM, Mutch DG (1999) Pelvic radiation with concurrent chemotherapy compared with pelvic and para-aortic radiation for high-risk cervical cancer. N Engl J Med 340:1137–1143CrossRefPubMedGoogle Scholar
  16. 16.
    Kim HS, Sardi JE, Katsumata N, Ryu HS, Nam JH, Chung HH, Park NH, Song YS, Behtash N, Kamura T, Cai HB, Kim JW (2013) Efficacy of neoadjuvant chemotherapy in patients with FIGO stage IB1 to IIA cervical cancer: an international collaborative meta-analysis. Eur J Surg Oncol 39:115–124CrossRefPubMedGoogle Scholar
  17. 17.
    Seth R, Tai LH, Falls T, de Souza CT, Bell JC, Carrier M, Atkins H, Boushey R, Auer RA (2013) Surgical stress promotes the development of cancer metastases by a coagulation-dependent mechanism involving natural killer cells in a murine model. Ann Surg 258:158–168CrossRefPubMedGoogle Scholar
  18. 18.
    Peralta-Zaragoza O, Bermúdez-Morales VH, Pérez-Plasencia C, Salazar-León J, Gómez-Cerón C, Madrid-Marina V (2012) Targeted treatments for cervical cancer: a review. Onco Targets Ther 5:315–328CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Diaz-Padilla I, Monk BJ, Mackay HJ, Oaknin A (2013) Treatment of metastatic cervical cancer: future directions involving targeted agents. Crit Rev Oncol Hematol 85:303–314CrossRefPubMedGoogle Scholar
  20. 20.
    Sekla B, Holeckova E (1959) Trials at immunotherapy of a transplanted cancer. Acta Unio Int Contra Cancrum 15:976–979PubMedGoogle Scholar
  21. 21.
    Cinader B, Hayley MA, Rider WD, Warwick OH (1961) Immunotherapy of a patient with choriocarcinoma. Can Med Assoc J 84:306–309PubMedCentralPubMedGoogle Scholar
  22. 22.
    Mathé G, Amiel JL, Schwarzenberg L, Cattan A, Schneider M (1965) Adoptive immunotherapy of acute leukemia: experimental and clinical results. Cancer Res 25:1525–1531PubMedGoogle Scholar
  23. 23.
    Egawa K (2004) Immuno-cell therapy of cancer in Japan. Anticancer Res 24:3321–3326PubMedGoogle Scholar
  24. 24.
    Lindahl P, Leary P, Gresser I (1972) Enhancement by interferon of the specific cytotoxicity of sensitized lymphocytes. Proc Natl Acad Sci U S A 69:721–725CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Kirkpatrick CH (1993) Structural nature and functions of transfer factors. Ann N Y Acad Sci 685:362–368CrossRefPubMedGoogle Scholar
  26. 26.
    Blume MR, Rosenbaum EH, Cohen RJ, Gershow J, Glassberg AB, Shepley E (1981) Adjuvant immunotherapy of high risk stage I melanoma with transfer factor. Cancer 47:882–888CrossRefPubMedGoogle Scholar
  27. 27.
    Wagner G, Gitsch E, Havelec L, Knapp W, Rainer H, Selander S (1983) Transfer factor as adjuvant immunotherapy in invasive cervix cancer. Report of a double-blind study. Wien Klin Wochenschr 95:738–742PubMedGoogle Scholar
  28. 28.
    de Kernion JB, Sarna G, Figlin R, Lindner A, Smith RB (1983) The treatment of renal cell carcinoma with human leukocyte alpha-interferon. J Urol 130:1063–1066Google Scholar
  29. 29.
    Pizza G, Severini G, Menniti D, De Vinci C, Corrado F (1984) Tumour regression after intralesional injection of interleukin 2 (IL-2) in bladder cancer. Preliminary report. Int J Cancer 34:359–367CrossRefPubMedGoogle Scholar
  30. 30.
    Berek JS, Hacker NF, Lichtenstein A, Jung T, Spina C, Knox RM, Brady J, Greene T, Ettinger LM, Lagasse LD et al (1985) Intraperitoneal recombinant alpha-interferon for “salvage” immunotherapy in stage III epithelial ovarian cancer: a Gynecologic Oncology Group study. Cancer Res 45:4447–4453PubMedGoogle Scholar
  31. 31.
    Goldberg RM, Ayoob M, Silgals R, Ahlgren JD, Neefe JR (1985) Phase II trial of lymphoblastoid interferon in metastatic malignant melanoma. Cancer Treat Rep 69:813–816PubMedGoogle Scholar
  32. 32.
    Legha SS (1986) Interferons in the treatment of malignant melanoma. A review of recent trials. Cancer 57:1675–1677CrossRefPubMedGoogle Scholar
  33. 33.
    Rosenberg SA (1986) Adoptive immunotherapy of cancer using lymphokine activated killer cells and recombinant interleukin-2. In: DeVita VT, Hellman S, Rosenberg SA (eds) Important advances in oncology. J.B. Lippincott, New York, pp 55–91Google Scholar
  34. 34.
    Ettinghausen SE, Rosenberg SA (1986) The adoptive immunotherapy of cancer using lymphokine activated killer cells and recombinant interleukin-2. Springer Semin Immunopathol 9:51–71CrossRefPubMedGoogle Scholar
  35. 35.
    van den Brink MR, Voogt PJ, Marijt WA, van Luxemburg-Heys SA, van Rood JJ, Brand A (1989) Lymphokine-activated killer cells selectively kill tumor cells in bone marrow without compromising bone marrow stem cell function in vitro. Blood 74:354–360PubMedGoogle Scholar
  36. 36.
    Rosenberg SA, Lotze MT, Muul LM, Leitman S, Chang AE, Vetto JT, Seipp CA, Simpson C (1986) A new approach to the therapy of cancer based on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2. Surgery 100:262–272PubMedGoogle Scholar
  37. 37.
    Rosenberg SA, Lotze MT, Muul LM, Leitman S, Chang AE, Ettinghausen SE, Matory YL, Skibber JM, Shiloni E, Vetto JT, Seipp CA, Simpson C, Reichert CM (1985) Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med 313:1485–1492CrossRefPubMedGoogle Scholar
  38. 38.
    Koretz MJ, Lawson DH, York RM, Graham SD, Murray DR, Gillespie TM, Levitt D, Sell KM (1991) Randomized study of interleukin 2 (IL-2) alone vs IL-2 plus lymphokine-activated killer cells for treatment of melanoma and renal cell cancer. Arch Surg 126:898–903CrossRefPubMedGoogle Scholar
  39. 39.
    Rosenberg SA, Lotze MT, Muul LM, Chang AE, Avis FP, Leitman S, Linehan WM, Robertson CN, Lee RE, Rubin JT, Seipp CA, Simpson CG, White DE (1987) A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N Engl J Med 316:889–897CrossRefPubMedGoogle Scholar
  40. 40.
    Belldegrun A, Muul LM, Rosenberg SA (1988) Interleukin 2 expanded tumor-infiltrating lymphocytes in human renal cell cancer: isolation, characterization, and antitumor activity. Cancer Res 48:206–214PubMedGoogle Scholar
  41. 41.
    Moy PM, Holmes EC, Golub SH (1985) A method for improved yield and purity in extracting lymphocytes from lung tumors. J Surg Res 38:17–23CrossRefPubMedGoogle Scholar
  42. 42.
    Topalian SL, Solomon D, Avis FP, Chang AE, Freerksen DL, Linehan WM, Lotze MT, Robertson CN, Seipp CA, Simon P et al (1988) Immunotherapy of patients with advanced cancer using tumor-infiltrating lymphocytes and recombinant interleukin-2: a pilot study. J Clin Oncol 6:839–853PubMedGoogle Scholar
  43. 43.
    Rosenberg SA, Spiess P, Lafreniere R (1986) A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 233:1318–1321CrossRefPubMedGoogle Scholar
  44. 44.
    Kradin RL, Kurnick JT, Lazarus DS, Preffer FI, Dubinett SM, Pinto CE, Gifford J, Davidson E, Grove B, Callahan RJ et al (1989) Tumour-infiltrating lymphocytes and interleukin-2 in treatment of advanced cancer. Lancet 1:577–580CrossRefPubMedGoogle Scholar
  45. 45.
    Rosenberg SA, Lotze MT, Yang JC, Aebersold PM, Linehan WM, Seipp CA, White DE (1989) Experience with the use of high-dose interleukin-2 in the treatment of 652 cancer patients. Ann Surg 210:474–484CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Mulder WM, Stukart MJ, Roos M, van Lier RA, Wagstaff J, Scheper RJ, Bloemena E (1995) Culture of tumour-infiltrating lymphocytes from melanoma and colon carcinoma: removal of tumour cells does not affect tumour-specificity. Cancer Immunol Immunother 41:293–301CrossRefPubMedGoogle Scholar
  47. 47.
    Schöndorf T, Engel H, Lindemann C, Kolhagen H, von Rücker AA, Mallmann P (1997) Cellular characteristics of peripheral blood lymphocytes and tumour-infiltrating lymphocytes in patients with gynaecological tumours. Cancer Immunol Immunother 44:88–96CrossRefPubMedGoogle Scholar
  48. 48.
    Steinman RM (1991) The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9:271–296CrossRefPubMedGoogle Scholar
  49. 49.
    Santin AD, Bellone S, Palmieri M, Zanolini A, Ravaggi A, Siegel ER, Roman JJ, Pecorelli S, Cannon MJ (2008) Human papillomavirus type 16 and 18 E7-pulsed dendritic cell vaccination of stage IB or IIA cervical cancer patients: a phase I escalating-dose trial. J Virol 82:1968–1979CrossRefPubMedCentralPubMedGoogle Scholar
  50. 50.
    Hsu FJ, Benike C, Fagnoni F, Liles TM, Czerwinski D, Taidi B, Engleman EG, Levy R (1996) Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med 2:52–58CrossRefPubMedGoogle Scholar
  51. 51.
    Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, Schadendorf D (1998) Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 4:328–332CrossRefPubMedGoogle Scholar
  52. 52.
    Thurner B, Haendle I, Röder C, Dieckmann D, Keikavoussi P, Jonuleit H, Bender A, Maczek C, Schreiner D, von den Driesch P, Bröcker EB, Steinman RM, Enk A, Kämpgen E, Schuler G (1999) Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med 190:1669–1678CrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.
    Thomas-Kaskel AK, Zeiser R, Jochim R, Robbel C, Schultze-Seemann W, Waller CF, Veelken H (2006) Vaccination of advanced prostate cancer patients with PSCA and PSA peptide-loaded dendritic cells induces DTH responses that correlate with superior overall survival. Int J Cancer 119:2428–2434CrossRefPubMedGoogle Scholar
  54. 54.
    Hildenbrand B, Sauer B, Kalis O, Stoll C, Freudenberg MA, Niedermann G, Giesler JM, Jüttner E, Peters JH, Häring B, Leo R, Unger C, Azemar M (2007) Immunotherapy of patients with hormone-refractory prostate carcinoma pre-treated with interferon-gamma and vaccinated with autologous PSA-peptide loaded dendritic cells – a pilot study. Prostate 67:500–508CrossRefPubMedGoogle Scholar
  55. 55.
    Salgaller ML, Tjoa BA, Lodge PA, Ragde H, Kenny G, Boynton A, Murphy GP (1998) Dendritic cell-based immunotherapy of prostate cancer. Crit Rev Immunol 18:109–119CrossRefPubMedGoogle Scholar
  56. 56.
    Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, Xu Y, Frohlich MW, Schellhammer PF (2010) IMPACT study investigators. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363:411–422CrossRefPubMedGoogle Scholar
  57. 57.
    Sheikh NA, Petrylak D, Kantoff PW, Dela Rosa C, Stewart FP, Kuan LY, Whitmore JB, Trager JB, Poehlein CH, Frohlich MW, Urdal DL (2013) Sipuleucel-T immune parameters correlate with survival: an analysis of the randomized phase 3 clinical trials in men with castration-resistant prostate cancer. Cancer Immunol Immunother 62:137–147CrossRefPubMedCentralPubMedGoogle Scholar
  58. 58.
    Malarkey MA, FDA approval letter – provenge (cited 24 Jan 2014). Available from: http://www.fda.gov/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/ucm210215.htm
  59. 59.
    Ferrara A, Nonn M, Sehr P, Schreckenberger C, Pawlita M, Dürst M, Schneider A, Kaufmann AM (2003) Dendritic cell-based tumor vaccine for cervical cancer II: results of a clinical pilot study in 15 individual patients. J Cancer Res Clin Oncol 129:521–530CrossRefPubMedGoogle Scholar
  60. 60.
    Ye F, Yu Y, Hu Y, Lu W, Xie X (2010) Alterations of dendritic cell subsets in the peripheral circulation of patients with cervical carcinoma. J Exp Clin Cancer Res 29:78CrossRefPubMedCentralPubMedGoogle Scholar
  61. 61.
    Cathelin D, Nicolas A, Bouchot A, Fraszczak J, Labbé J, Bonnotte B (2011) Dendritic cell-tumor cell hybrids and immunotherapy: what’s next? Cytotherapy 13:774–785CrossRefPubMedGoogle Scholar
  62. 62.
    Berezhnaya NM, Vinnichuk UD, Konovalenko VF, Vorobjova LI, Belova OB, Proskurnia LA (2005) The sensitivity of chemioresistant human tumor explants to lysis by activated and nonactivated autological lymphocytes: a pilot study. Exp Oncol 27:303–307PubMedGoogle Scholar
  63. 63.
    Verma V, Sharma V, Shrivastava SK, Nadkarni JJ (2000) IL-12 and IL-2 potentiate the in vitro tumor-specific activity of peripheral blood cells from cervical cancer patients. J Exp Clin Cancer Res 19:367–374PubMedGoogle Scholar
  64. 64.
    Terunuma H, Deng X, Dewan Z, Fujimoto S, Yamamoto N (2008) Potential role of NK cells in the induction of immune responses: implications for NK cell-based immunotherapy for cancers and viral infections. Int Rev Immunol 27:93–110CrossRefPubMedGoogle Scholar
  65. 65.
    Imai K, Matsuyama S, Miyake S, Suga K, Nakachi K (2000) Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence an 11-year follow-up study of a general population. Lancet 356:1795–1799CrossRefPubMedGoogle Scholar
  66. 66.
    Dewan MZ, Terunuma H, Takada M, Tanaka Y, Abe H, Sata T, Toi M, Yamamoto N (2007) Role of natural killer cells in hormone-independent rapid tumor formation and spontaneous metastasis of breast cancer cells in vivo. Breast Cancer Res Treat 104:267–275CrossRefPubMedGoogle Scholar
  67. 67.
    Krause SW, Gastpar R, Andreesen R, Gross C, Ullrich H, Thonigs G, Pfister K, Multhoff G (2004) Treatment of colon and lung cancer patients with ex vivo heat shock protein 70-peptide-activated, autologous natural killer cells: a clinical phase i trial. Clin Cancer Res 10:3699–3707CrossRefPubMedGoogle Scholar
  68. 68.
    Ishikawa E, Tsuboi K, Saijo K, Harada H, Takano S, Nose T, Ohno T (2004) Autologous natural killer cell therapy for human recurrent malignant glioma. Anticancer Res 24:1861–1871PubMedGoogle Scholar
  69. 69.
    Takada M, Terunuma H, Deng X, Dewan MZ, Saji S, Kuroi K, Yamamoto N, Toi M (2011) Refractory lung metastasis from breast cancer treated with multidisciplinary therapy including an immunological approach. Breast Cancer 18:64–67CrossRefPubMedGoogle Scholar
  70. 70.
    Seltzer V, Doyle A, Kadish AS (1983) Natural cytotoxicity in malignant and premalignant cervical neoplasia and enhancement of cytotoxicity with interferon. Gynecol Oncol 15:340–349CrossRefPubMedGoogle Scholar
  71. 71.
    Amador-Molina A, Hernández-Valencia JF, Lamoyi E, Contreras-Paredes A, Lizano M (2013) Role of innate immunity against human papillomavirus (HPV) infections and effect of adjuvants in promoting specific immune response. Viruses 5:2624–2642CrossRefPubMedCentralPubMedGoogle Scholar
  72. 72.
    Radhakrishna Pillai M, Balaram P, Padmanabhan TK, Abraham T, Krishnan Nair M (1989) Interleukin 2 and alpha interferon induced in vitro modulation of spontaneous cell mediated cytotoxicity in patients with cancer of the uterine cervix undergoing radiotherapy. Acta Oncol 28:39–44CrossRefPubMedGoogle Scholar
  73. 73.
    Cosiski Marana HR, Santana da Silva J, Moreira de Andrade J (2000) NK cell activity in the presence of IL-12 is a prognostic assay to neoadjuvant chemotherapy in cervical cancer. Gynecol Oncol 78:318–323CrossRefPubMedGoogle Scholar
  74. 74.
    Rutella S, Iudicone P, Bonanno G, Fioravanti D, Procoli A, Lavorino C, Foddai ML, Lorusso D, Martinelli E, Vacca M, Ipsevich F, Nuti M, Scambia G, Pierelli L (2012) Adoptive immunotherapy with cytokine-induced killer cells generated with a new good manufacturing practice-grade protocol. Cytotherapy 14:841–850CrossRefPubMedGoogle Scholar
  75. 75.
    Premkumar S, Dedeepiya VD, Terunuma H, Senthilkumar R, Srinivasan T, Reena HC, Preethy S, Abraham SJ (2013) Cell based autologous immune enhancement therapy (AIET) after radiotherapy in a locally advanced carcinoma of the cervix. Case Rep Oncol Med 2013:903094Google Scholar
  76. 76.
    Geller MA, Cooley S, Judson PL, Ghebre R, Carson LF, Argenta PA, Jonson AL, Panoskaltsis-Mortari A, Curtsinger J, McKenna D, Dusenbery K, Bliss R, Downs LS, Miller JS (2011) A phase II study of allogeneic natural killer cell therapy to treat patients with recurrent ovarian and breast cancer. Cytotherapy 13:98–107CrossRefPubMedCentralPubMedGoogle Scholar
  77. 77.
    Meller B, Frohn C, Brand JM, Lauer I, Schelper LF, von Hof K, Kirchner H, Richter E, Baehre M (2004) Monitoring of a new approach of immunotherapy with allogenic (111)In-labelled NK cells in patients with renal cell carcinoma. Eur J Nucl Med Mol Imaging 31:403–407CrossRefPubMedGoogle Scholar
  78. 78.
    Cheng M, Chen Y, Xiao W, Sun R, Tian Z (2013) NK cell-based immunotherapy for malignant diseases. Cell Mol Immunol 10:230–252CrossRefPubMedCentralPubMedGoogle Scholar
  79. 79.
    Tseng HC, Arasteh A, Paranjpe A, Teruel A, Yang W, Behel A, Alva JA, Walter G, Head C, Ishikawa TO, Herschman HR, Cacalano N, Pyle AD, Park NH, Jewett A (2010) Increased lysis of stem cells but not their differentiated cells by natural killer cells; de-differentiation or reprogramming activates NK cells. PLoS One 5:e11590CrossRefPubMedCentralPubMedGoogle Scholar
  80. 80.
    Castriconi R, Daga A, Dondero A, Zona G, Poliani PL, Melotti A, Griffero F, Marubbi D, Spaziante R, Bellora F, Moretta L, Moretta A, Corte G, Bottino C (2009) NK cells recognize and kill human glioblastoma cells with stem cell-like properties. J Immunol 182:3530–3539CrossRefPubMedGoogle Scholar
  81. 81.
    Zhang SL, Wang YS, Zhou T, Yu XW, Wei ZT, Li YL (2012) Isolation and characterization of cancer stem cells from cervical cancer HeLa cells. Cytotechnology 64:477–484CrossRefPubMedCentralPubMedGoogle Scholar
  82. 82.
    Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5:275–284CrossRefPubMedGoogle Scholar
  83. 83.
    Maher J, Davies ET (2004) Targeting cytotoxic T lymphocytes for cancer immunotherapy. Br J Cancer 91:817–821PubMedCentralPubMedGoogle Scholar
  84. 84.
    Wright SE, Rewers-Felkins KA, Quinlin IS, Phillips CA, Townsend M, Philip R, Dobrzanski MJ, Lockwood-Cooke PR, Robinson W (2012) Cytotoxic T-lymphocyte immunotherapy for ovarian cancer: a pilot study. J Immunother 35:196–204CrossRefPubMedCentralPubMedGoogle Scholar
  85. 85.
    Verdegaal EM, Visser M, Ramwadhdoebé TH, van der Minne CE, van Steijn JA, Kapiteijn E, Haanen JB, van der Burg SH, Nortier JW, Osanto S (2011) Successful treatment of metastatic melanoma by adoptive transfer of blood-derived polyclonal tumor-specific CD4+ and CD8+ T cells in combination with low-dose interferon-alpha. Cancer Immunol Immunother 60:953–963CrossRefPubMedCentralPubMedGoogle Scholar
  86. 86.
    Lee YS, Kim TS, Kim DK (2011) T lymphocytes derived from human cord blood provide effective antitumor immunotherapy against a human tumor. BMC Cancer 11:225CrossRefPubMedCentralPubMedGoogle Scholar
  87. 87.
    Liao T, Kaufmann AM, Qian X, Sangvatanakul V, Chen C, Kube T, Zhang G, Albers AE (2013) Susceptibility to cytotoxic T cell lysis of cancer stem cells derived from cervical and head and neck tumor cell lines. J Cancer Res Clin Oncol 139:159–170CrossRefPubMedGoogle Scholar
  88. 88.
    Holtmeier W, Kabelitz D (2005) Gammadelta T cells link innate and adaptive immune responses. Chem Immunol Allergy 86:151–183CrossRefPubMedGoogle Scholar
  89. 89.
    Gertner J, Wiedemann A, Poupot M, Fournié JJ (2007) Human gammadelta T lymphocytes strip and kill tumor cells simultaneously. Immunol Lett 110:42–53CrossRefPubMedGoogle Scholar
  90. 90.
    Kobayashi H, Tanaka Y, Yagi J, Minato N, Tanabe K (2011) Phase I/II study of adoptive transfer of γδ T cells in combination with zoledronic acid and IL-2 to patients with advanced renal cell carcinoma. Cancer Immunol Immunother 60:1075–1084CrossRefPubMedGoogle Scholar
  91. 91.
    Nicol AJ, Tokuyama H, Mattarollo SR, Hagi T, Suzuki K, Yokokawa K, Nieda M (2011) Clinical evaluation of autologous gamma delta T cell-based immunotherapy for metastatic solid tumours. Br J Cancer 105:778–786CrossRefPubMedCentralPubMedGoogle Scholar
  92. 92.
    Li H, Wang Y, Zhou F (2010) Effect of ex vivo-expanded γδ-T cells combined with galectin-1 antibody on the growth of human cervical cancer xenografts in SCID mice. Clin Invest Med 33:E280–E289PubMedGoogle Scholar
  93. 93.
    Jerud ES, Bricard G, Porcelli SA (2006) CD1d-restricted natural killer T cells: roles in tumor immunosurveillance and tolerance. Transfus Med Hemother 33:18–36CrossRefGoogle Scholar
  94. 94.
    Olszak T, An D, Zeissig S, Vera MP, Richter J, Franke A, Glickman JN, Siebert R, Baron RM, Kasper DL, Blumberg RS (2012) Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336:489–493CrossRefPubMedCentralPubMedGoogle Scholar
  95. 95.
    Terabe M, Berzofsky JA (2008) The role of NKT cells in tumor immunity. Adv Cancer Res 101:277–348CrossRefPubMedCentralPubMedGoogle Scholar
  96. 96.
    Motohashi S, Ishikawa A, Ishikawa E, Otsuji M, Iizasa T, Hanaoka H, Shimizu N, Horiguchi S, Okamoto Y, Fujii S, Taniguchi M, Fujisawa T, Nakayama T (2006) A phase I study of in vitro expanded natural killer T cells in patients with advanced and recurrent non-small cell lung cancer. Clin Cancer Res 12:6079–6086CrossRefPubMedGoogle Scholar
  97. 97.
    Yamasaki K, Horiguchi S, Kurosaki M, Kunii N, Nagato K, Hanaoka H, Shimizu N, Ueno N, Yamamoto S, Taniguchi M, Motohashi S, Nakayama T, Okamoto Y (2011) Induction of NKT cell-specific immune responses in cancer tissues after NKT cell-targeted adoptive immunotherapy. Clin Immunol 138:255–265CrossRefPubMedGoogle Scholar
  98. 98.
    Melnick JL (1976) Immunological control of cervical cancer: discussion. Cancer Res 36:859–860PubMedGoogle Scholar
  99. 99.
    Pimenta JM, Galindo C, Jenkins D, Taylor SM (2013) Estimate of the global burden of cervical adenocarcinoma and potential impact of prophylactic human papillomavirus vaccination. BMC Cancer 13:553CrossRefPubMedCentralPubMedGoogle Scholar
  100. 100.
    Rey-Ares L, Ciapponi A, Pichon-Riviere A (2012) Efficacy and safety of human papilloma virus vaccine in cervical cancer prevention: systematic review and meta-analysis. Arch Argent Pediatr 110:483–489PubMedGoogle Scholar
  101. 101.
    Trimble CL, Frazer IH (2009) Development of therapeutic HPV vaccines. Lancet Oncol 10:975–980CrossRefPubMedCentralPubMedGoogle Scholar
  102. 102.
    Kenter GG, Welters MJ, Valentijn AR, Lowik MJ, Berends-van der Meer DM, Vloon AP, Essahsah F, Fathers LM, Offringa R, Drijfhout JW, Wafelman AR, Oostendorp J, Fleuren GJ, van der Burg SH, Melief CJ (2009) Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N Engl J Med 361:1838–1847CrossRefPubMedGoogle Scholar
  103. 103.
    Mikysková R, Indrová M, Símová J, Jandlová T, Bieblová J, Jinoch P, Bubeník J, Vonka V (2004) Treatment of minimal residual disease after surgery or chemotherapy in mice carrying HPV16-associated tumours: cytokine and gene therapy with IL-2 and GM-CSF. Int J Oncol 24:161–167PubMedGoogle Scholar
  104. 104.
    Renoux VM, Bisig B, Langers I, Dortu E, Clémenceau B, Thiry M, Deroanne C, Colige A, Boniver J, Delvenne P, Jacobs N (2011) Human papillomavirus entry into NK cells requires CD16 expression and triggers cytotoxic activity and cytokine secretion. Eur J Immunol 41:3240–3252CrossRefPubMedGoogle Scholar
  105. 105.
    Koebel CM, Vermi W, Swann JB, Zerafa N, Rodig SJ, Old LJ, Smyth MJ, Schreiber RD (2007) Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450:903–907CrossRefPubMedGoogle Scholar
  106. 106.
    Shanker A, Marincola FM (2011) Cooperativity of adaptive and innate immunity: implications for cancer therapy. Cancer Immunol Immunother 60:1061–1074CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Samuel J. K. Abraham
    • 1
    • 2
  • Hiroshi Terunuma
    • 3
  • Vidyasagar Devaprasad Dedeepiya
    • 1
  • Sumana Premkumar
    • 4
    • 5
  • Senthilkumar Preethy
    • 1
  1. 1.The Mary-Yoshio Translational Hexagon (MYTH)Nichi-In Centre for Regenerative Medicine (NCRM)ChennaiIndia
  2. 2.Faculty of MedicineYamanashi UniversityChuoJapan
  3. 3.Biotherapy Institute of JapanTokyoJapan
  4. 4.Chennai Meenakshi Multispeciality Hospital LimitedChennaiIndia
  5. 5.Dr. Kamakshi Memorial HospitalChennaiIndia

Personalised recommendations