Skip to main content

Magnetic and Transport Properties of M-Cu (M = Co, Fe) Microwires

  • Chapter
  • First Online:
Next Generation Sensors and Systems

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 16))

Abstract

We report on magnetic, transport and structural properties of Cox-Cu100−x (5 ≤ x ≤ 30) and Fe37Cu63 glass-coated microwires prepared by the Taylor-Ulitovsky method. The objective of the reported work is to develop a novel functional materials exhibiting giant magnetoresistance (GMR). For Co-Cu microwires with x = 5 we observed the resistivity minimum at 40 K associated with the Kondo-like behaviour but magnetoresistance is small. For x ≥ 10 magnetoresistance reaches 9 % at low temperatures. Temperature dependence of susceptibility shows considerable difference for x > 10 and x ≤ 10 attributed to the presence of small Co grains embedded in the Cu matrix for x ≥ 10. By X-ray diffraction we found, that the structure of Cox-Cu100−x microwires for x ≥ 10 is granular consisting of two phases: fcc Cu appearing in all the samples and fcc α-Co presented only in microwires with higher Co content. Structure of Fe37Cu63 microwires consists of Cu nanograins with average grain size of around 40 nm and α-Fe nanocrystals with average grain size ranging between 6 and 45 nm depending on samples geometry. These microwires also exhibit GMR (up to 7.5 % at 5 K).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Vazquez, H. Chiriac, A. Zhukov, L. Panina, T. Uchiyama, On the state-of-the-art in magnetic microwires and expected trends for scientific and technological studies. Phys. Status Solidi A 208, 493–501 (2011)

    Google Scholar 

  2. J. González, A. Zhukov, Amorphous magnetic materials for sensors, in Encyclopedia of Sensors, ed. by C.A. Grimes, E.C. Dickey, M.V. Pishko, vol. 1 (American Scientific Publishers, Stevenson Ranch, 2006), pp. 79–103. ISBN:1-58883-056-X

    Google Scholar 

  3. V. Zhukova, A. Zhukov, V. Kraposhin, A. Prokoshin, J. Gonzalez, Magnetic properties and GMI of soft melt-extracted magnetic amorphous fibers. Sens. Actuators, A 106, 225–229 (2003)

    Google Scholar 

  4. H. Chiriac, T.A. Ovari, Amorphous glass-covered magnetic wires: preparation, properties, applications. Prog. Mater. Sci. 40, 333–407 (1997)

    Google Scholar 

  5. V. Zhukova, M. Ipatov, A. Zhukov, Thin magnetically soft wires for magnetic microsensors. Sensors 9, 9216–9240 (2009)

    Google Scholar 

  6. M.-H. Phan, H.-X. Peng, Giant magnetoimpedance materials: fundamentals and applications. Prog. Mater. Sci. 53, 323–420 (2008)

    Google Scholar 

  7. A. Zhukov, V. Zhukova, Magnetic Properties and Applications of Ferromagnetic Microwires With Amorphous and Nanocrystalline Structure (Nova Science Publishers, New York, 2009). ISBN:978-1-60741-770-5

    Google Scholar 

  8. A.V. Ulitovski, N.M. Avernin, Method of fabrication of metallic microwire. USSR Patent, No. 161325. Bulletin No. 7, p. 14, 19 March 1964

    Google Scholar 

  9. A.V. Ulitovsky, I.M. Maianski, A.I. Avramenco, Method of continuous casting of glass coated microwire. USSR Patent, No. 128427. Bulletin No. 10, p. 14, 15 May 1960

    Google Scholar 

  10. E.Ya. Badinter, N.R. Berman, I.F. Drabenko, V.I. Zaborovsky, Z.I. Zelikovsky, V.G. Cheban, Cast Micwories and Its Properties (Shtinica, Kishinev, 1973)

    Google Scholar 

  11. L. Kraus, J. Schneider, H. Wiesner, Ferromagnetic resonance in amorphous alloys prepared by rapid quenching from the melt. Czechoslovak J. Phys. B 26, 601–602 (1976)

    Article  Google Scholar 

  12. V.S. Larin, A.V. Torcunov, A. Zhukov, J. González, M. Vazquez, L. Panina, Preparation and properties of glass-coated microwires. J. Magn. Magn. Mater. 249(1–2), 39–45 (2002)

    Article  Google Scholar 

  13. V. Zhukova, J.J. del Val, M. Ipatov, M. Ilyn, A. Granovsky, A. Zhukov, Magnetic and transport properties of Co-Cu microwires, in Proceedings of the 8th International Conference on Sensing Technology, Liverpool, UK, pp. 332–337, 2–4 Sept 2014

    Google Scholar 

  14. A. Zhukov, C. Garcia, M. Ilyn, R. Varga, J.J. Del Val, A. Granovsky, V. Rodionova, M. Ipatov, V. Zhukova, Magnetic and transport properties of granular and Heusler-type glass-coated microwires. J. Magn. Magn. Mater. 324, 3558–3562 (2012)

    Article  Google Scholar 

  15. A. Zhukov, V. Rodionova, M. Ilyn, A.M. Aliev, R. Varga, S. Michalik, A. Aronin, G. Abrosimova, A. Kiselev, M. Ipatov, V. Zhukova, Magnetic properties and magnetocaloric effect in Heusler-type glass-coated NiMnGa microwires. J. Alloy. Compd. 575, 73–79 (2013)

    Article  Google Scholar 

  16. M.I. Ilyn, V. Zhukova, J.D. Santos, M.L. Sánchez, V.M. Prida, B. Hernando, V. Larin, J. González, A.M. Tishin, A. Zhukov, Magnetocaloric effect in nanogranular glass coated microwires. Phys. Status Solidi A 205(6), 1378–1381 (2008)

    Article  Google Scholar 

  17. A.E. Berkowitz, J.R. Mitchell, M.J. Carey, A.P. Young, S. Zhang, F.E. Spada, F.T. Parker, A. Hutten, G. Thomas, Giant magnetoresistance in heterogeneous Cu-Co alloys. Phys. Rev. Lett. 68, 3745–3748 (1992)

    Article  Google Scholar 

  18. J.Q. Xiao, J.S. Jiang, C.L. Chien, Giant magnetoresistance in nonmultilayer magnetic system. Phys. Rev. Lett. 68, 3749–3752 (1992)

    Article  Google Scholar 

  19. B. Gopalakrishnan, C. Sürgers, R. Montbrun, A. Singh, M. Uhlarz, H.V. Löhneysen, Electronic transport in magnetically ordered Mn5Si3Cx films. Phys. Rev. B 77, 104414 (2008)

    Article  Google Scholar 

  20. A. Kawabata, Effects of tunneling on the properties of metallic fine particles. J. Phys. Soc. Jpn. 43, 1491–1496 (1977)

    Article  Google Scholar 

  21. H. Sato, Y. Kobayashi, Y. Aoki, K. Shintaku, Y. Hasaito, T. Shinjo, Kondo-like scattering correlated with the giant magnetoresistance in Au/Fe superlattices. J. Phys. Soc. Jpn. 62, 3380–3383 (1993)

    Article  Google Scholar 

  22. J.A. De Toro, J.P. Andres, J.A. Gonzalez, J.P. Goff, A.J. Barbero, J.M. Riveiro, The role of improved giant magnetoresistance in nanogranular Co/Ag: interparticle RKKY interactions. Phys. Rev. B 70, 224412–224416 (2004)

    Article  Google Scholar 

  23. M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petron, P. Etienne, G. Creuzer, A. Friederich, J. Chazelas, Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1998)

    Google Scholar 

  24. J.-H. Chen, L. Li, W.G. Cullen, E.D. Williams, M.S. Fuhrer, Tunable Kondo effect in graphene with defects. Nat. Phys. 7, 535–538 (2011)

    Article  Google Scholar 

  25. R.H. Yu, X.X. Zhang, J. Tejada, M. Knobel, P. Tiberto, P. Allia, Magnetic properties and giant magnetoresistance in melt-spun Co-Cu alloys. J. Appl. Phys. 78, 392–397 (1995)

    Article  Google Scholar 

  26. A. Zhukov, J. Gonzalez, V. Zhukova, Magnetoresistance in thin wires with granular structure. J. Magn. Magn. Mater. 294, 165–173 (2005)

    Article  Google Scholar 

  27. A. Zhukov, V. Zhukova, Magnetic Sensors and Applications Based on Thin Magnetically Soft Wires with Tuneable Magnetic Properties (International Frequency Sensor Association Publishing, Barcelona, 2013), p. 164p

    Google Scholar 

  28. H. Chiriac, T.A. Ovari, Gh Pop, Internal stress distribution in glass-covered amorphous magnetic wires. Phys. Rev. B 42, 10105–10113 (1995)

    Google Scholar 

  29. M. Vázquez, J.M. García-Beneytez, J.M. García, J.P. Sinnecker, A. Zhukov, Giant magneto-impedance in heterogeneous microwires. J. Appl. Phys. 88, 6501–6505 (2000)

    Article  Google Scholar 

  30. A.P. Zhukov, The remagnetization process of bistable amorphous alloys. Mater. Des. 5, 299–305 (1993)

    Article  Google Scholar 

  31. A. Zhukov, M. Ipatov, M. Churyukanova, S. Kaloshkin, V. Zhukova, Giant magnetoimpedance in thin amorphous wires: from manipulation of magnetic field dependence to industrial applications. J. Alloy Compd. 586, S279–S286 (2014)

    Article  Google Scholar 

  32. T. Uchiyama, K. Mohri, S. Nakayama, Measurement of spontaneous oscillatory magnetic field of guinea-pig smooth muscle preparation using pico-tesla resolution amorphous wire magneto-impedance sensor. IEEE Trans. Magn. 47, 3070–3073 (2011)

    Article  Google Scholar 

  33. H. Chiriac, T.A. Ovari, A. Zhukov, Magnetoelastic anisotropy of amorphous microwires. J. Magn. Magn. Mater. 254–255, 469–471 (2003)

    Article  Google Scholar 

  34. A.S. Antonov, V.T. Borisov, O.V. Borisov, A.F. Prokoshin, N.A. Usov, Residual quenching stresses in glass-coated amorphous ferromagnetic microwires. J. Phys. D Appl. Phys. 33, 1161–1168 (2000)

    Article  Google Scholar 

  35. J. Gonzalez, A. Zhukov, V. Zhukova, A.F. Cobeño, J.M. Blanco, A.R. de Arellano-Lopez, S. Lopez-Pombero, J. Martinez-Fernandez, V. Larin, A. Torcunov, High coercivity of partially devitrified glass-coated finemet microwires: effect of geometry and thermal treatment. IEEE Trans. Magn. 36(5), 3015–3017 (2000)

    Article  Google Scholar 

  36. V. Zhukova, A.F. Cobeño, A. Zhukov, J.M. Blanco, V. Larin, J. Gonzalez, Coercivity of glass-coated Fe73.4-xCu1Nb3.1Si13.41+xB9.1 (0<x<1.6) microwires. Nanostruct. Mater. 11(8), 1319–1327 (1999)

    Article  Google Scholar 

  37. A. Vedyaev, A. Granovsky, Electroresistivity of amorhous ferromagnetic alloys in the Ziman-Faber model. Fiz. Met. Metalloved. 63, 1076–1082 (1987)

    Google Scholar 

  38. M. Csontos, T. Wojtowicz, X. Liu, M. Dobrowolska, B. Jankó, J.K. Furdyna, G. Mihály, Magnetic scattering of spin polarized carriers in (In, Mn)Sb dilute magnetic semiconductor. Phys. Rev. Let. 95, 227203–227204 (2005)

    Article  Google Scholar 

  39. A. Granovsky, M. Ilyn, V. Zhukova, A. Zhukov, J. Gonzalez, Giant magnetoresistance of granular microwires: Spin_dependent scattering in integranular spacers. Phys. Solid State 53, 320–322 (2011)

    Article  Google Scholar 

  40. D.R. Hamann, New solution for exchange scattering in dilute alloys. Phys. Rev. 158, 570–580 (1967)

    Article  Google Scholar 

  41. N. Néel, J. Kroger, R. Berndt, T.O. Wehling, A.I. Lichtenstein, M.I. Katsnelson, Controlling the Kondo effect in CoCun clusters atom by atom. Phys. Rev. Lett 101, 266803–266804 (2008)

    Article  Google Scholar 

  42. H. Sato, Y. Kobayashi, Y. Aoki, H. Yamamoto, Transport properties in granular Co-Ag alloys. J. Phys.: Condens. Matter 7, 7053–7062 (1995)

    Google Scholar 

  43. J.C. Slonczewski, Origin of biquadratic exchange in magnetic multilayers. J. Appl. Phys. 73, 5957–5962 (1993)

    Article  Google Scholar 

  44. H. Sato, I. Sakamoto, C. Fiertz, Transport properties of Al/Ni and Al/Ag multilayer systems. J. Phys.: Condens. Matter 3, 9067–9078 (1991)

    Google Scholar 

  45. N. Bachar, S. Lerer, S. Hacohen-Gourgy, B. Almog, G. Deutscher, Kondo-like behavior near the metal-to-insulator transition of nano-scale granular aluminum. arXiv: 1207.0970v1 [cond-mat.supr-con] 4 July 2012

    Google Scholar 

  46. I. Bakonyi, L. Peter, Electrodeposited multilayer films with giant magnetoresistance (GMR): progress and problems. Prog. Mater Sci. 55, 107–245 (2010)

    Article  Google Scholar 

  47. V. Zhukova, C. Garcia, J.J. Del Val, M. Ilyn, A. Granovsky, A. Zhukov, Magnetic and transport properties of Co–Cu microwires with granular structure. Thin Solid Films 543, 142–147 (2013)

    Article  Google Scholar 

  48. R. Jenkins, R.L. Snyder, Introduction to X-ray Powder Diffractometry (Wiley, NewYork, 1996)

    Book  Google Scholar 

  49. H.P. Klug, L.E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley, New York, 1974)

    Google Scholar 

  50. J.J. Del Val, J. Gonzalez, A. Zhukov, Structural study of glass coated Cu-based microwires. Phys. B 299, 242–250 (2001)

    Article  Google Scholar 

  51. N. Peleg, S. Shtrikman, G. Gorodetsky, I. Felner, Magnetic study of particle distribution in granular Au-Co. J. Magn. Magn. Mater. 191, 349–353 (1999)

    Article  Google Scholar 

  52. A. Zhukov, J. González, M. Vázquez, V. Larin, A. Torcunov, Nanocrystalline and amorphous magnetic microwires, in Encyclopedia of Nanoscience and Nanotechnology, vol. 6 (American Scientific Publishers, Valencia, 2004), pp. 365–387

    Google Scholar 

  53. J.C. Denardin, A.L. Brandl, M. Knobel, P. Panissod, A.B. Pakhomov, H. Liu, X.X. Zhang, Thermoremanence and zero-field-cooled/field-cooled magnetization study of Cox(SiO2)1−x granular films. Phys. Rev. B 65, 064422 (2002)

    Article  Google Scholar 

  54. W.C. Nunes, E. De Biasi, C.T. Meneses, M. Knobel, H. Winnischofer, T.C.R. Rocha, D. Zanchet, Magnetic behavior of Ni nanoparticles with high disordered atomic structure. Appl. Phys. Lett. 92, 183113 (2008)

    Article  Google Scholar 

  55. A. Zhukov, C. Garcıa, J.J. Del Val, J. Gonzalez, M. Knobel, D. Serantes, D. Baldomir, V. Zhukova, Studies of Fe–Cu microwires with nanogranular structure. J. Phys.: Condens. Matter 21, 035301 (2009)

    Google Scholar 

  56. P. Allia, M. Knobel, P. Tiberto, F. Vinai, Magnetic properties and giant magnetoresistance of melt-spun granular Cu100−x−Cox alloys. Phys. Rev. B 52, 15398–15411 (1995)

    Article  Google Scholar 

  57. P.M. Paulus, F. Luis, M. Kroll, G. Schmid, L.J. de Jongh, Low-temperature study of the magnetization reversal and magnetic anisotropy of Fe, Ni, and Co nanowires. J. Magn. Magn. Mater. 224, 180–196 (2001)

    Article  Google Scholar 

  58. M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petron, P. Etienne, G. Creuzer, A. Friederich, J. Chazelas, Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988)

    Google Scholar 

  59. X.F. Jin, Morphology and magnetic structure of Fe/Cu(100). J. Phys. D Appl. Phys. 35, 2332–2338 (2002)

    Article  Google Scholar 

  60. A. Zhukov, C. García, V. Zhukova, V. Larin, J. González, J.J. del Val, M. Knobel, J.M. Blanco, Fabrication and magnetic properties of Cu50(Fe69Si10B16C5)50 thin microwires. J. Non-Cryst. Solids 353, 922–924 (2007)

    Article  Google Scholar 

  61. C. García, A. Zhukov, J. González, J.J. del Val, J.M. Blanco, M. Knobel, V. Zhukova, Fabrication, structural and magnetic characterization of thin microwires with novel composition Cu70(Co70Fe5Si10B15)30. J. Alloy. Compd. 483, 566–569 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zhukov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhukov, A., Ipatov, M., del Val, J.J., Ilyn, M., Granovsky, A., Zhukova, V. (2016). Magnetic and Transport Properties of M-Cu (M = Co, Fe) Microwires. In: Mukhopadhyay, S. (eds) Next Generation Sensors and Systems. Smart Sensors, Measurement and Instrumentation, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-21671-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21671-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21670-6

  • Online ISBN: 978-3-319-21671-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics