Skip to main content

Results of Servo-ventilation and Other Ventilatory Modes in Sleep Apnea Syndrome: Key Topics and Practical Implications

  • Chapter
Noninvasive Mechanical Ventilation

Abstract

During sleep, there is missing wakeful stimulus to spontaneous breathing and respiration is regulated mainly by CO2 homeostasis. Continuous positive airway pressure (CPAP) therapy is capable of treating obstructive events but does not provide ventilation during times of central apneas. Different forms of positive pressure ventilation are able to generate airflow in the absence of respiratory drive. To restore regular breathing, however, pressure support should primarily compensate apneic episodes without increasing ventilation during spontaneous breaths. Otherwise, the loop-feedback mechanism will not adjust back to CO2 hemostasis. Servo-ventilation provides pressure support disproportional to spontaneous breathing effort and, therefore, has the best potential to compensate central events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guilleminault C, Tilkian A, Dement WC. The sleep apnea syndromes. Annu Rev Med. 1976;27:465–84.

    Article  CAS  PubMed  Google Scholar 

  2. Sullivan CE, Issa FG, Berthon-Jones M, et al. Reversal of obstructive sleep apnoea by continuous positive airway pressure applied through the nares. Lancet. 1981;1:862–5.

    Article  CAS  PubMed  Google Scholar 

  3. Randerath W, Parys K, Lehmann D, et al. Self-adjusting continuous positive airway pressure therapy based on the measurement of impedance. A comparison of free pressure variation and individually fixed higher minimum pressure. Respiration. 2000;67:272–9.

    Article  CAS  PubMed  Google Scholar 

  4. Wenzel M, Kerl J, Dellweg D. Expiratory pressure reduction (C-Flex Method) versus fix CPAP in the therapy for obstructive sleep apnoea. Pneumologie. 2007;61:692–5.

    Article  CAS  PubMed  Google Scholar 

  5. Bradley TD, Logan AG, Kimoff RJ, et al. Continuous positive airway pressure for central sleep apnea and heart failure. N Engl J Med. 2005;353:2025–33.

    Article  CAS  PubMed  Google Scholar 

  6. Dempsey JA. Crossing the apnoeic threshold: causes and consequences. Exp Physiol. 2005;90:13–24.

    Article  PubMed  Google Scholar 

  7. Nakayama H, Smith CA, Rodman JR, et al. Carotid body denervation eliminates apnea in response to transient hypocapnia. J Appl Physiol. 2003;94:155–64.

    Article  PubMed  Google Scholar 

  8. Xie A, Rutherford R, Rankin F, et al. Hypocapnia and increased ventilatory responsiveness in patients with idiopathic central sleep apnea. Am J Respir Crit Care Med. 1995;152:1950–5.

    Article  CAS  PubMed  Google Scholar 

  9. Xie A, Skatrud JB, Puleo DS, et al. Apnea-hypopnea threshold for CO2 in patients with congestive heart failure. Am J Respir Crit Care Med. 2002;165:1245–50.

    Article  PubMed  Google Scholar 

  10. Hanly P, Zuberi N, Gray R. Pathogenesis of Cheyne-Stokes respiration in patients with congestive heart failure. Relationship to arterial PCO2. Chest. 1993;104:1079–84.

    Article  CAS  PubMed  Google Scholar 

  11. Thomas RJ. Alternative approaches to treatment of central sleep apnea. Sleep Med Clin. 2014;9:87–104.

    Article  PubMed  PubMed Central  Google Scholar 

  12. White DP. Pathogenesis of obstructive and central sleep apnea. Am J Respir Crit Care Med. 2005;172:1363–70.

    Article  PubMed  Google Scholar 

  13. Johnson KG, Johnson DC. Bilevel positive airway pressure worsens central apneas during sleep. Chest. 2005;128:2141–50.

    Article  PubMed  Google Scholar 

  14. Younes M, Ostrowski M, Thompson W, et al. Chemical control stability in patients with obstructive sleep apnea. Am J Respir Crit Care Med. 2001;163:1181–90.

    Article  CAS  PubMed  Google Scholar 

  15. Allam JS, Olson EJ, Gay PC, et al. Efficacy of adaptive servoventilation in treatment of complex and central sleep apnea syndromes. Chest. 2007;132:1839–46.

    Article  PubMed  Google Scholar 

  16. Arzt M, Wensel R, Montalvan S, et al. Effects of dynamic bilevel positive airway pressure support on central sleep apnea in men with heart failure. Chest. 2008;134:61–6.

    Article  PubMed  Google Scholar 

  17. Teschler H, Dohring J, Wang YM, et al. Adaptive pressure support servo-ventilation: a novel treatment for Cheyne-Stokes respiration in heart failure. Am J Respir Crit Care Med. 2001;164:614–9.

    Article  CAS  PubMed  Google Scholar 

  18. Dellweg D, Kerl J, Hoehn E, et al. Randomized controlled trial of noninvasive positive pressure ventilation (NPPV) versus servoventilation in patients with CPAP-induced central sleep apnea (complex sleep apnea). Sleep. 2013;36:1163–71.

    PubMed  PubMed Central  Google Scholar 

  19. Morgenthaler TI, Gay PC, Gordon N, et al. Adaptive servoventilation versus noninvasive positive pressure ventilation for central, mixed, and complex sleep apnea syndromes. Sleep. 2007;30:468–75.

    PubMed  Google Scholar 

  20. Philippe C, Stoica-Herman M, Drouot X, et al. Compliance with and effectiveness of adaptive servoventilation versus continuous positive airway pressure in the treatment of Cheyne-Stokes respiration in heart failure over a six month period. Heart. 2006;92:337–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Oldenburg O, Schmidt A, Lamp B, et al. Adaptive servoventilation improves cardiac function in patients with chronic heart failure and Cheyne-Stokes respiration. Eur J Heart Fail. 2008;10:581–6.

    Article  PubMed  Google Scholar 

  22. Cowie MR, Woehrle H, Wegscheider K, et al. Rationale and design of the SERVE-HF study: treatment of sleep-disordered breathing with predominant central sleep apnoea with adaptive servo-ventilation in patients with chronic heart failure. Eur J Heart Fail. 2013;15:937–43.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Javaheri S, Brown LK, Randerath WJ. Clinical applications of adaptive servoventilation devices: part 2. Chest. 2014;146:858–68.

    Article  PubMed  Google Scholar 

  24. Javaheri S, Brown LK, Randerath WJ. Positive airway pressure therapy with adaptive servoventilation: part 1: operational algorithms. Chest. 2014;146:514–23.

    Article  PubMed  Google Scholar 

  25. Oldenburg O, Bitter T, Wellmann B, et al. Trilevel adaptive servoventilation for the treatment of central and mixed sleep apnea in chronic heart failure patients. Sleep Med. 2013;14:422–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominic Dellweg PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dellweg, D., Wenzel, M., Kerl, J. (2016). Results of Servo-ventilation and Other Ventilatory Modes in Sleep Apnea Syndrome: Key Topics and Practical Implications. In: Esquinas, A. (eds) Noninvasive Mechanical Ventilation. Springer, Cham. https://doi.org/10.1007/978-3-319-21653-9_78

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21653-9_78

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21652-2

  • Online ISBN: 978-3-319-21653-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics