Skip to main content

Development of a Massively Parallel QM/MM Approach Combined with a Theory of Solutions

  • Chapter
  • First Online:
Quantum Modeling of Complex Molecular Systems

Abstract

In this contributed article we review our method, referred to as QM/MM-ER, which combines the hybrid QM/MM simulation with the theory of energy representation. Our recent developments and applications related to the method are also introduced. First, we describe the parallel implementation of the Kohn-Sham DFT for the QM region that utilizes the real-space grids to represent the one-electron wave functions. Then, the efficiency of our code on a modern parallel machine is demonstrated for a large water cluster with an ice structure. Secondly, the theory of energy representation (ER) is formulated within the framework of the density functional theory of solutions and its application to the free energy analyses of the protein hydration is provided. Thirdly, we discuss the coupling of the QM/MM approach with the method of energy representation, where the formulation for free energy δμ due to the electron density fluctuation of a QM solute plays a key role. As a recent progress in QM/MM-ER we developed a rigorous free energy functional to compute free energy contribution δμ. The outline of the method as well as its extension to the QM/MM simulation coupled with a second-order perturbation approach are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Warshel A, Levitt M (1976) J Mol Biol 103:227

    Article  CAS  Google Scholar 

  2. Warshel A (1991) Computer modeling of chemical reactions in enzymes and solutions. Wiley, New York

    Google Scholar 

  3. Cramer CJ, Truhlar DG (1994) Structure and reactivity in aqueous solution. ACS symposium series, vol 568, ACS, Washington, DC

    Google Scholar 

  4. Tapia O, Bertrán J (1996) Solvent effects and chemical reactivity. Kluwer Academic, Dordrecht

    Google Scholar 

  5. Berne BJ, Ciccotti G, Coker DF (1998) Classical and quantum dynamics in condensed phase simulations. World Scientific, Singapore

    Google Scholar 

  6. Combined QM/MM calculations in chemistry and biochemistry. J Mol Struct THEOCHEM 632 (2003) (Special Issue, edited by Ruiz- López MF)

    Google Scholar 

  7. Canuto S (2008) Solvation effects on molecules and biomolecules. Challenges and advances in computational chemistry and physics, vol. 6. Springer, London

    Google Scholar 

  8. Canuto S (2010) Combining quantum mechanics and molecular mechanics: some recent progresses in QM/MM methods. Advances in quantum chemistry, vol. 59. Elsevier, Oxford in UK

    Google Scholar 

  9. Takahashi H, Hori T, Wakabayashi T, Nitta T (2000) Chem Lett 29:222

    Article  Google Scholar 

  10. Takahashi H, Hori T, Wakabayashi T, Nitta T (2001) J Phys Chem A 105:4351

    Article  CAS  Google Scholar 

  11. Takahashi H, Hori T, Hashimoto H, Nitta T (2001) J Comp Chem 22:1252

    Article  CAS  Google Scholar 

  12. Chelikowsky JR, Troullier N, Saad Y (1994) Phys Rev Lett 72:1240

    Article  CAS  Google Scholar 

  13. Chelikowsky JR, Troullier N, Wu K, Saad Y (1994) Phys Rev B 50:11355

    Article  CAS  Google Scholar 

  14. Hirose K, Ono T, Fujimoto Y, Tsukamoto S (2005) First-principles calculations in real-space formalism. Imerial College Press, Singapore

    Book  Google Scholar 

  15. Hohenberg P, Kohn W (1964) Phys Rev 136:B864

    Article  Google Scholar 

  16. Kohn W, Sham LJ (1965) Phys Rev 140:A1133

    Article  Google Scholar 

  17. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  18. Matubayasi N, Nakahara M (2000) J Chem Phys 113:6070

    Article  CAS  Google Scholar 

  19. Matubayasi N, Nakahara M (2002) J Chem Phys 117:3605 (erratum, J Chem Phys 118:2446 (2003))

    Google Scholar 

  20. Matubayasi N, Nakahara M (2003) J Chem Phys 119:9686

    Article  CAS  Google Scholar 

  21. Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Oxford University Press, Oxford

    Google Scholar 

  22. Frenkel D, Smit B (2002) Understanding molecular simulation, from algorithms to applications, 2nd edn. Academic Press, London

    Google Scholar 

  23. Takahashi H, Matubayasi N, Nakahara M, Nitta T (2004) J Chem Phys 121:3989

    Article  CAS  Google Scholar 

  24. Takahashi H, Omi A, Morita A, Matubayasi N (2012) J Chem Phys 136:214503

    Article  Google Scholar 

  25. Hansen JP, McDonald IR (1986) Theory of simple liquids, 2nd edn. Academic Press, London

    Google Scholar 

  26. Suzuoka D, Takahashi H, Morita A (2014) J Chem Phys 140:134111

    Article  Google Scholar 

  27. Szabo A, Ostlund NS (1996) Modern quantum chemistry, introduction to advanced electronic structure theory. Dover, New York

    Google Scholar 

  28. Martin RM (2008) Electronic structure: basic theory and practical methods. Cambridge University Press, Cambridge

    Google Scholar 

  29. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  30. Ono T, Hirose K (1999) Phys Rev Lett 82:5016

    Article  CAS  Google Scholar 

  31. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  32. Kleinman L, Bylander DM (1982) Phys Rev Lett 48:1425

    Article  CAS  Google Scholar 

  33. Dunning TH (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  34. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  35. Burke K (2012) J Chem Phys 136:15091

    Article  Google Scholar 

  36. Levy RM, Belhadj M, Kitchen DB (1991) J Chem Phys 95:3627

    Article  CAS  Google Scholar 

  37. Luzhkov V, Warshel A (1992) J Comput Chem 13:199

    Article  CAS  Google Scholar 

  38. Åqvist J, Medina C, Samuelsson JE (1994) Protein Eng 7:385

    Article  Google Scholar 

  39. Carlson HA, Jorgensen WL (1995) J Phys Chem 99:10667

    Article  CAS  Google Scholar 

  40. Kast SM (2001) Phys Chem Chem Phys 3:5087

    Article  CAS  Google Scholar 

  41. Vener MV, Leontyev IV, Dyakov YA, Basilevsky MV, Newton MD (2002) J Phys Chem B 106:13078

    Article  CAS  Google Scholar 

  42. Galván IF, Sanchez ML, Martin ME, Olivares del Valle FJ, Aguilar MA (2003) J Chem Phys 118:255

    Google Scholar 

  43. Freedman H, Truong TN (2004) J Chem Phys 121:2187

    Article  CAS  Google Scholar 

  44. Higashi M, Hayashi S, Kato S (2007) J Chem Phys 126:144503

    Article  Google Scholar 

  45. Chuev GN, Fedorov MV, Crain J (2007) Chem Phys Lett 448:198

    Article  CAS  Google Scholar 

  46. Yamamoto T (2008) J Chem Phys 129:244104

    Article  Google Scholar 

  47. Frolov AI, Ratkova EL, Palmer DS, Fedorov MV (2011) J Phys Chem B 115:6011

    Article  CAS  Google Scholar 

  48. Lin B, Pettitt BM (2011) J Comput Chem 32:878

    Article  CAS  Google Scholar 

  49. Sakuraba S, Matubayasi N (2014) J Comput Chem 35:1592

    Article  CAS  Google Scholar 

  50. Henderson D (1992) Fundamentals of inhomogeneous fluids. Dekker, New York

    Google Scholar 

  51. Chandler D, McCoy JD, Singer SJ (1986) J Chem Phys 85:5971

    Article  CAS  Google Scholar 

  52. Ramirez R, Gebauer R, Mareschal M, Borgis D (2002) Phys Rev E 66:031206

    Article  Google Scholar 

  53. Liu Y, Zhao S, Wu J (2013) J Chem Theory Comp 9:1896

    Article  CAS  Google Scholar 

  54. Sergiievskyi VP, Jeanmairet G, Levesque M, Borgis D (2014) J Phys Chem Lett 5:1935

    Article  CAS  Google Scholar 

  55. Karino Y, Fedorov MV, Matubayasi N (2010) Chem Phys Lett 496:351

    Article  CAS  Google Scholar 

  56. Karino Y, Matubayasi N (2013) Phys Chem Chem Phys 15:4377

    Article  CAS  Google Scholar 

  57. Matubayasi N, Liang KK, Nakahara M (2006) J Chem Phys 124:154908

    Article  Google Scholar 

  58. Matubayasi M, Shinoda W, Nakahara M (2008) J Chem Phys 128:195107

    Article  Google Scholar 

  59. Takemura K, Guo H, Sakuraba S, Matubayasi N, Kitao A (2012) J Chem Phys 137:215105

    Article  Google Scholar 

  60. Bode W, Greyling HJ, Huber R, Otlewski J, Wilusz T (1989) FEBS Lett 242:285

    Article  CAS  Google Scholar 

  61. Sevcik J, Urbanikova L, Dauter Z, Wilson KS (1998) Acta Crystallogr Sect D Biol Crystallogr 54:954

    Article  CAS  Google Scholar 

  62. Chen R, Weng ZP (2002) Proteins 47:281

    Article  CAS  Google Scholar 

  63. Pierce BG, Hourai Y, Weng ZP (2011) PLoS ONE 6:e24657

    Article  CAS  Google Scholar 

  64. Pierce B, Weng ZP (2007) Proteins 67:1078

    Article  CAS  Google Scholar 

  65. Leaver-Fay A, Tyka M, Lewis SM, Lange OF, Thompson J, Jacak R, Kaufman K, Renfrew PD, Smith CA, Sheffler W, Davis IW, Cooper S, Treuille A, Mandell DJ, Richter F, Ban YEA, Fleishman SJ, Corn JE, Kim DE, Lyskov S, Berrondo M, Mentzer S, Popovic Z, Havranek JJ, Karanicolas J, Das R, Meiler J, Kortemme T, Gray JJ, Kuhlman B, Baker D, Bradley P (2011) Methods Enzymol 487:545

    Article  CAS  Google Scholar 

  66. Takahashi H, Satou W, Hori T, Nitta T (2005) J Chem Phys 122:044504

    Article  Google Scholar 

  67. Takahashi H, Kawashima Y, Nitta T, Matubayasi N (2005) J Chem Phys 123:124504

    Article  Google Scholar 

  68. Hori T, Takahashi H, Nakano M, Nitta T, Yang W (2005) Chem Phys Lett 419:240

    Article  Google Scholar 

  69. Hori T, Takahashi H, Furukawa S, Nakano M, Yang W (2007) J Chem Phys B 111:581

    Article  CAS  Google Scholar 

  70. Takahashi H, Ohno H, Yamauchi T, Kishi R, Furukawa S, Nakano M, Matubayasi N (2008) J Chem Phys 128:064507

    Article  Google Scholar 

  71. Takahashi H, Ohno H, Kishi R, Nakano M, Matubayasi N (2008) J Chem Phys 129:205103

    Article  Google Scholar 

  72. Takahashi H, Miki F, Ohno H, Kishi R, Ohta S, Furukawa S, Nakano M (2009) J Math Chem 46:781

    Article  CAS  Google Scholar 

  73. Takahashi H, Maruyama K, Karino Y, Morita A, Nakano M, Jungwirth P, Matubayasi N (2011) J Phys Chem B 115:4745

    Article  CAS  Google Scholar 

  74. Takahashi H, Iwata Y, Kishi R, Nakano M (2011) Int J Quantum Chem 111:1748

    Article  CAS  Google Scholar 

  75. Matubayasi N, Takahashi H (2012) J Chem Phys 136:044505

    Article  Google Scholar 

  76. Suzuoka D, Takahashi H, Morita A (2014) J Chem Phys 140:134111

    Article  Google Scholar 

  77. Takahashi H, Suzuoka D, Morita A (2015) J Chem Theory Comput 11:1181

    Google Scholar 

  78. Sakuraba S, Matubayasi N (2011) J Chem Phys 135:114108

    Article  Google Scholar 

  79. Berendsen HJC, Grigera JR, Straatsma TP (1987) J Phys Chem 91:6269

    Article  CAS  Google Scholar 

  80. IAPWS Industrial Formulation 1997 for the thermodynamic properties of water and steam (1997). Erlangen, Germany

    Google Scholar 

  81. Francl MM (1985) J Phys Chem 89:428

    Article  CAS  Google Scholar 

  82. Luque FJ, Orozco M (1998) J Comput Chem 19:866

    Article  CAS  Google Scholar 

  83. Cubero E, Luke FJ, Orozco M, Gao J (2003) J Phys Chem B 107:1664

    Article  CAS  Google Scholar 

  84. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999

    Article  CAS  Google Scholar 

  85. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) J Am Chem Soc 118:11225

    Article  CAS  Google Scholar 

  86. Gallicchio E, Zhang LY, Levy RM (2002) J Comput Chem 23:517

    Article  CAS  Google Scholar 

  87. Meyer EA, Castellano RK, Diederich F (2003) Angew Chem Int Ed 39:1210

    Article  Google Scholar 

  88. Ma JC, Dougherty DA (1997) Chem Rev 97:1303

    Article  CAS  Google Scholar 

  89. Tsuzuki S, Honda K, Uchimaru T, Mikami M, Tanabe K (1984) J Am Chem Soc 106:4102

    Article  Google Scholar 

  90. Ten-no S, Hirata F, Kato S (1994) J Chem Phys 100:7443

    Article  CAS  Google Scholar 

  91. Sato H, Hirata F (1999) J Phys Chem B 103:6596

    Article  CAS  Google Scholar 

  92. van Gunsteren WF, Billeter SR, Eising AA, Hünenberger PH, Krüger P, Mark AE, Scott WRP, Tironi IG (1996) Biomolecular simulation: the GROMOS96 manual and user guide. vdf Hochschulverslag, ETH Zürich Switzerland

    Google Scholar 

Download references

Acknowledgments

Manuscript for the contribution to the book: Quantum Modeling of Complex Molecular Systems (Springer).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hideaki Takahashi or Nobuyuki Matubayasi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Takahashi, H., Matubayasi, N. (2015). Development of a Massively Parallel QM/MM Approach Combined with a Theory of Solutions. In: Rivail, JL., Ruiz-Lopez, M., Assfeld, X. (eds) Quantum Modeling of Complex Molecular Systems. Challenges and Advances in Computational Chemistry and Physics, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-21626-3_6

Download citation

Publish with us

Policies and ethics