Skip to main content

Abstract

This chapter deals with all the theoretical background that has been in the origin of the system proposed in this book. Mathematical treatment is presented, as well as simulation data to confirm its validity. Every module that makes part of the proposed architecture (SC voltage doubler, phase controller, local supply, start-up, and a voltage limiter) is analyzed and explained in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carvalho, C., Lavareda, G., Amaral, A., Carvalho, C. N., & Paulino, N. (2014). A CMOS micro power switched-capacitor DC-DC step-up converter for indoor light energy harvesting applications. Analog Integrated Circuits and Signal Processing, 78(2), 333–351.

    Google Scholar 

  2. Hande, A., Polk, T., Walker, W., & Bhatia, D. (2007). Indoor solar energy harvesting for sensor network router nodes. Microprocessors and Microsystems, 31(6), 420–432.

    Google Scholar 

  3. Brunelli, D., Moser, C., Thiele, L., & Benini, L. (2009). Design of a solar-harvesting circuit for batteryless embedded systems. IEEE Transactions on Circuits and Systems I: Regular Papers, 56(11), November 2009, pp. 2519–2528.

    Google Scholar 

  4. Simjee, F., & Chou, P. H. (2006). Everlast: Long-life, super-capacitor-operated wireless sensor node. In Proceedings of the 2006 International Symposium on Low Power Electronics and Design (ISLPED’06), 4–6 October 2006, pp. 197–202.

    Google Scholar 

  5. Saggini, S., Ongaro, F., Galperti, C., & Mattavelli, P. (2010). Supercapacitor-based hybrid storage systems for energy harvesting in wireless sensor networks. In Proceedings of the 25th Annual IEEE Applied Power Electronics Conference and Exposition (APEC 2010), 21–25 February 2010, pp. 2281–2287.

    Google Scholar 

  6. Wang, W. S., O’Donnell, T., Ribetto, L., O’Flynn, B., Hayes, M., & O’Mathuna, C. (2009). Energy harvesting embedded wireless sensor system for building environment applications. In Proceedings of the 1st International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace and Electronic Systems Technology (Wireless VITAE 2009), 17–20 May 2009, pp. 36–41.

    Google Scholar 

  7. Wang, W., Wang, N., Jafer, E., Hayes, M., O’Flynn, B., & O’Mathuna, C. (2010). Autonomous wireless sensor network based building energy and environment monitoring system design. In Proceedings of the 2nd Conference on Environmental Science and Information Application Technology (ESIAT), 17–18 July 2010, pp. 367–372.

    Google Scholar 

  8. Tan, Y. K., & Panda, S. K. (2011). Energy harvesting from hybrid indoor ambient light and thermal energy sources for enhanced performance of wireless sensor nodes. IEEE Transactions on Industrial Electronics, 58(9), September 2011, pp. 4424–4435.

    Google Scholar 

  9. Weddel, A. S., Merret, G. V., & Al-Hashimi, B. M. (2012). Photovoltaic sample-and-hold circuit enabling MPPT indoors for low-power systems. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(6), pp. 1196–1204.

    Google Scholar 

  10. Nasiri, A., Zabalawi, S. A., & Mandic, G. (2009). Indoor power harvesting using photovoltaic cells for low-power applications. IEEE Transactions on Industrial Electronics, 56(11), 4502–4509.

    Google Scholar 

  11. Javanmard, N., Vafadar, G., & Nasiri, A. (2009). Indoor power harvesting using photovoltaic cells for low power applications. In Proceedings of the 13th European Conference on Power Electronics and Applications (EPE’09), 8–10 September 2009, pp. 1–10.

    Google Scholar 

  12. Yu, H., Wu, H., & Wen, Y. (2010). An ultra-low input voltage power management circuit for indoor micro-light energy harvesting system. In Proceedings of the IEEE Sensors 2010, 1–4 November 2010, pp. 261–264.

    Google Scholar 

  13. Shao, H, Tsui, C.-Y., & Ki, W.-H. (2009). The design of a micro power management system for applications using photovoltaic cells with the maximum output power control. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 17(8), 1138–1142.

    Google Scholar 

  14. Colomer, J., Miribel-Catala, P., Saiz-Vela, A., & Samitier, J. (2010). A multi-harvested self-powered system in a low-voltage low-power technology. IEEE Transactions on Industrial Electronics, 58(9), 4250–4263.

    Google Scholar 

  15. Fernandes, J. R., Martins, M., & Piedade, M. (2010). An energy harvesting circuit for self-powered sensors. In Proceedings of the 17th International Conference on Mixed Design of Integrated Circuits and Systems (MIXDES), 24–26 June 2010, pp. 205–208.

    Google Scholar 

  16. Ferri, M., Pinna, D., Malcovati, P., Dallago, E., & Ricotti, G. (2009). Integrated stabilized photovoltaic energy harvester. In Proceedings of the 16th IEEE International Conference on Electronics, Circuits and Systems (ICECS 2009), 13–16 December 2009, pp. 299–302.

    Google Scholar 

  17. Shao, H., Tsui, C.-Y., & Ki, W.-H. (2007). An inductor-less micro solar power management system design for energy harvesting applications. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS 2007), 27–30 May 2007, pp. 1353–1356.

    Google Scholar 

  18. Shao, H., Tsui, C.-Y., & Ki, W.-H. (2009). An inductor-less MPPT design for light energy harvesting systems. In Proceedings of the Asia and South Pacific Design Automation Conference (ASP-DAC 2009), 19–22 January 2009, pp. 101–102.

    Google Scholar 

  19. Dallago, E., Danioni, A., Marchesi, M., Nucita, V., & Venchi, G. (2011). A self-powered electronic interface for electromagnetic energy harvester. IEEE Transactions on Power Electronics, 26(11), 3174–3182.

    Google Scholar 

  20. Kong, N., & Ha, D. S. (2012). Low-power design of a self-powered piezoelectric energy harvesting system with maximum power point tracking. IEEE Transactions on Power Electronics, 27(5), 2298–2308.

    Google Scholar 

  21. Piqué, G. V., & Bergveld, H. J. (2012). State-of-the-art of integrated switching power converters. In M. Steyaert, A. van Roermund, & A. Baschirotto (Eds.), Analog circuit design: low voltage low power, short range wireless front-ends, power management and DC-DC (pp. 259–281). Netherlands: Springer.

    Google Scholar 

  22. Qiu, Y., van Liempd, C., op het Veld, B., Blanken, P. G., & Van Hoof, C. (2011). 5 μW-to-10mW input power range inductive boost converter for indoor photovoltaic energy harvesting with integrated maximum power point tracking algorithm. In IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 20–24 February 2011, pp. 118–120.

    Google Scholar 

  23. Gregorian, R., & Temes, G. (1986). Analog MOS integrated circuits for signal processing. New York: Wiley.

    Google Scholar 

  24. Waltisperger, G., Condemine, C., & Basrour, S. (2010). Photovoltaic energy harvester for micro-scale applications. In Proceedings of the 8th IEEE International Conference (NEWCAS 2010), 20–23 June 2010, pp. 177–180.

    Google Scholar 

  25. Pour, N. K., Krummenacher, F., & Kayal, M. (2013). A reconfigurable micro power solar energy harvester for ultra-low power autonomous microsystems. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS 20013), 19–23 May 2013, pp. 33–36.

    Google Scholar 

  26. Seeman, M. D., & Sanders, S. R. (2008). Analysis and Optimization of Switched-Capacitor DC–DC Converters. IEEE Transactions on Power Electronics, 23(2), pp. 841–851.

    Google Scholar 

  27. Jeong, J., Jiang, X., & Culler, D. (2008). Design and analysis of micro-solar power systems for wireless sensor networks. In Proceedings of the 5th International Conference on Networked Sensing Systems (INSS 2008), 17–19 June 2008, pp. 181–188.

    Google Scholar 

  28. Esram, T., & Chapman, P. L. (2007). Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques. IEEE Transactions on Energy Conversion, 22(2), 439–449.

    Google Scholar 

  29. Carvalho, C., Lavareda, G., Lameiro, J., & Paulino, N. (2011). A step-up μ-power converter for solar energy harvesting applications, using Hill Climbing maximum power point tracking. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS 2011), 15–18 May 2011, pp. 1924–1927.

    Google Scholar 

  30. Stark, B. H., Szarka, G. D., & Rooke, E. D. (2011). Start-up circuit with low minimum operating power for microwatt energy harvesters. IET Circuits, Devices and Systems, 5(4), 267–274.

    Google Scholar 

  31. Wenck, J., Amirtharajah, R., Collier, J., & Siebert, J. (2007). AC power supply circuits for energy harvesting. In Proceedings of the IEEE Symposium on VLSI Circuits, 14–16 June 2007, pp. 92–93.

    Google Scholar 

  32. Mendez-Delgado, E., & Serrano, G. J. (2011). A 300 mV low-voltage start-up circuit for energy harvesting systems. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS 2011), 15–18 May 2011, pp. 829–832.

    Google Scholar 

  33. Carvalho, C., & Paulino, N. (2013). Start-up circuit for low-power indoor light energy harvesting applications. Electronics Letters, 49(10), pp. 669–671.

    Google Scholar 

  34. Carvalho, C., & Paulino, N. (2013). A voltage limiter circuit for indoor light energy harvesting applications. In IFIP Advances in Information and Communication Technology—Technological Innovation for the Internet of Things (ISSN 1868-4238, ISBN 978-642-37290-2, Vol. 394, pp. 441–448). Berlin: Springer.

    Google Scholar 

  35. Pimentel, D., & Musilek, P. (2010). Power management with energy harvesting devices. In Proceedings of the 23rd Canadian Conference on Electrical and Computer Engineering (CCECE), 2–5 May 2010, pp. 1–4.

    Google Scholar 

  36. Silva-Martinez, J. (1996). Adjustable CMOS voltage limiters for low-voltage applications. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS 1996—‘Connecting the World’), 12–15 May 1996, pp. 465–468.

    Google Scholar 

  37. Kim, J., Nam, C., & Lee, K.-Y. (2010). A design of transceiver for 13.56 MHz RFID reader using the peak detector with automatic reference voltage generator and voltage limiter. In Proceedings of the International SoC Design Conference (ISOCC 2010), 22–23 November 2010, pp. 287–289.

    Google Scholar 

  38. Fernandez, E., Beriain, A., Solar, H., Garcia-Alonso, A., Berenguer, R., Sosa, J., Monzon, J. M., Garcia-Alonso, S., & Montiel-Nelson, J. A. (2011). Low power voltage limiter design for a full passive UHF RFID sensor. In Proceedings of the IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS 2011), 7–10 August 2011, pp. 1–4.

    Google Scholar 

  39. Magnelli, L., Crupi, F., Corsonello, P., Pace, C., & Iannaccone, G. (2011). A 2.6 nW, 0.45 V temperature-compensated subthreshold CMOS voltage reference. IEEE Journal of Solid-State Circuits, 46(2), 465–474.

    Google Scholar 

  40. Maxwell Technologies. Datasheet K2 series ultracapacitors [Online]. Available http://www.maxwell.com/products/ultracapacitors/docs/datasheet_k2_series_1015370.pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Manuel Ferreira Carvalho .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ferreira Carvalho, C.M., Paulino, N.F.S.V. (2016). Proposed Energy Harvesting System. In: CMOS Indoor Light Energy Harvesting System for Wireless Sensing Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-21617-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21617-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21616-4

  • Online ISBN: 978-3-319-21617-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics