Skip to main content

Abstract

In the present chapter, the main types of energy conditioning systems will be summarily characterized, as well as energy storing devices and MPPT techniques. Raw electrical energy captured from the ambient sources is generally not suitable for direct usage to power electronic circuits. As such, this energy must be properly conditioned for practical use. The objective is to create a stabilized voltage (or current), which is required to power and bias the sets of load circuits and devices. According to the intended needs, the primary DC voltage must be stepped up (boost operation) or stepped down (buck operation). The classes of circuits that can achieve such a voltage conversion can be divided into those that use inductors and those that do not. Either way, the ultimate objective is to perform the voltage conversion as efficiently as possible. The regulator circuit also plays the role of protecting the energy storage device from overload voltages and, when dealing with a PV-based system, of setting the working output voltage of the PV cell, in order to achieve optimal power operation conditions, by using a MPPT algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhu, G., & Ioinovici, A. (1996). Switched-capacitor power supplies: DC voltage ratio, efficiency, ripple, regulation. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS 1996—‘Connecting the World’), 12–15 May 1996, Vol. 1, pp. 553–556.

    Google Scholar 

  2. Wens, M., & Steyaert, M. (2011). Design and implementation of fully-integrated inductive DC-DC converters in standard CMOS, analog circuits and signal processing. Springer Science+Business Media B.V.

    Google Scholar 

  3. Erickson, R. W. (2007). DC–DC power converters. Wiley Encyclopedia of Electrical and Electronics Engineering.

    Google Scholar 

  4. Sze, N.-M., Su, F., Lam, Y.-H., Ki, W.-H., & Tsui, C.-Y. (2008). Integrated single-inductor dual-input dual-output boost converter for energy harvesting applications. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS 2008), 18–21 May 2008, pp. 2218–2221.

    Google Scholar 

  5. Richelli, A., Colalongo, L., Tonoli, S., & Kovacs-Vajna, Z. M. (2009). A 0.2—1.2 V DC/DC boost converter for power harvesting applications. IEEE Transactions on Power Electronics, 24(6), 1541–1546.

    Google Scholar 

  6. Dondi, D., Bertacchini, A., Larcher, L., Pavan, P., Brunelli, D., & Benini, L. (2008). A solar energy harvesting circuit for low power applications. In Proceedings of the IEEE International Conference on Sustainable Energy Technologies (ICSET 2008), 24–27 November 2008, pp. 945–949.

    Google Scholar 

  7. Huang, M.-H., & Chen, K.-H. (2009). Single-Inductor Multi-Output (SIMO) DC-DC Converters With High Light-Load Efficiency and Minimized Cross-Regulation for Portable Devices. IEEE Journal of Solid-State Circuits, 44(4), 1099–1111.

    Google Scholar 

  8. Steyaert, M., Van Breussegem, T., Meyvaert, H., Callemeyn, P., & Wens, M. (2011). DC-DC converters: From discrete towards fully integrated CMOS. In Proceedings of the European Solid State Circuits Conference (ESSCIRC 2011), 12–16 September 2011, pp. 42–49.

    Google Scholar 

  9. Seeman, M. D., Ng, V. W., Hanh-Phuc Le, John, M., Alon, E., & Sanders, S. R. (2010). A comparative analysis of Switched-Capacitor and inductor-based DC-DC conversion technologies. In Proceedings of the IEEE 12 th Workshop on Control and Modeling for Power Electronics (COMPEL), 28–30 June 2010, pp. 1–7.

    Google Scholar 

  10. Van Breussegem, T., & Steyaert, M. (2009). A 82 % efficiency 0.5 % ripple 16-phase fully integrated capacitive voltage doubler. In Proceedings of the Symposium on VLSI Circuits 2009, 16–18 June 2009, pp. 198–199.

    Google Scholar 

  11. Seeman, M. D., & Sanders, S. R. (2008). Analysis and Optimization of Switched-Capacitor DC–DC Converters. IEEE Transactions on Power Electronics, 23(2), pp. 841–851.

    Google Scholar 

  12. Makowski, M. S., & Maksimovic, D. (1995). Performance limits of switched-capacitor DC-DC converters. In Conference Records of the 26th Annual IEEE Power Electronics Specialists Conference (PESC’95), 18–22 June 1995, Vol. 2, pp. 1215–1221.

    Google Scholar 

  13. Lin, P. M., & Chua, L. O. (1977). Topological generation and analysis of voltage multiplier circuits. IEEE Transactions on Circuits and Systems, 34(2), 517–530.

    Google Scholar 

  14. Cockcroft, J. D., & Walton, E. T. S. (1932). Experiments with high velocity positive ions. (I) further developments in the method of obtaining high velocity positive ions. In Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 136(830), 619–630.

    Google Scholar 

  15. Dickson, J. (1976). On-chip high-voltage generation in NMOS integrated circuits using an improved voltage multiplier technique. IEEE Journal of Solid-State Circuits, 11(6), 374–378.

    Google Scholar 

  16. Liu, M. (2006). Demystifying switched-capacitor circuits, Newnes: Elsevier Inc.

    Google Scholar 

  17. Cabrini, A., Gobbi, L., & Torelli, G. (2007). Voltage gain analysis of integrated fibonacci-like charge pumps for low power applications. IEEE Transactions on Circuits and Systems II: Express Briefs, 54(11), 929–933.

    Google Scholar 

  18. Starzyk, J., Jan, Y.-W., & Qiu, F. (2001). A DC-DC charge pump design based on voltage doublers. IEEE Transactions on Circuits and SystemsI: Fundamental Theory and Applications, 48(3), pp. 350–359.

    Google Scholar 

  19. Van Breussegem, T. M., Wens, M., Geukens, E., Geys, D., & Steyaert, M. S. J. (2008). Area-driven optimisation of switched-capacitor DC/DC converters. Electronics Letters, 44(25), 1488–1490.

    Google Scholar 

  20. Su, F., Ki, W.-H., & Tsui, C.-Y. (2009). Regulated switched-capacitor doubler with interleaving control for continuous output regulation. IEEE Journal of Solid-State Circuits, 44(4), 1112–1120.

    Google Scholar 

  21. Ramadass, Y. K., & Chandrakasan, A. P. (2007). Voltage scalable switched capacitor DC-DC converter for ultra-low-power on-chip applications. In Proceedings of the IEEE Power Electronics Specialists Conference (PESC 2007), 17–21 June 2007, pp. 2353–2359.

    Google Scholar 

  22. Carvalho, C., & Paulino, N. (2010). A MOSFET only, step-up DC-DC micro power converter, for solar energy harvesting applications. In Proceedings of the 17th International Conference on Mixed Design of Integrated Circuits and Systems (MIXDES), 24–26 June 2010, pp. 499–504.

    Google Scholar 

  23. Carvalho, C., & Paulino, N. (2010). A MOSFET only, step-up DC-DC micro power converter, for solar energy harvesting applications. International Journal of Microelectronics and Computer Science, 1(2), 112–119 (ISSN 2080-8755).

    Google Scholar 

  24. Carvalho, C., Lavareda, G., & Paulino N. (2011). A DC-DC step-up μ-power converter for energy harvesting applications, using maximum power point tracking, based on fractional open circuit voltage. In M. Luis & Camarinha-Matos (Ed.), IFIP advances in information and communication technology—technological innovation for sustainability (ISSN 1868-4238, ISBN 978-3-642-19169-5, Vol. 349, pp. 510–517). Berlin: Springer.

    Google Scholar 

  25. Ngo, K. D. T., & Webster, R. (1994). Steady-state analysis and design of a switched-capacitor DC-DC converter. IEEE Transactions on Aerospace and Electronic Systems, 30(1), 92–101.

    Google Scholar 

  26. Pan, Z., Zhang, F., & Peng, F. Z. (2005). Power losses and efficiency analysis of multilevel dc-dc converters. In Proceedings of the 20th Annual IEEE Applied Power Electronics Conference and Exposition (APEC 2005), 6–10 March 2005, Vol. 3, pp. 1393–1398.

    Google Scholar 

  27. Raghunathan, V., & Chou, P. H. (2006). Design and power management of energy harvesting embedded Systems. In Proceedings of the International Symposium on Low Power Electronics and Design (ISLPED’06), 4–6 October 2006, pp. 369–374.

    Google Scholar 

  28. Jeong, J., Jiang, X., & Culler, D. (2008). Design and analysis of micro-solar power systems for wireless sensor networks. In Proceedings of the 5th International Conference on Networked Sensing Systems (INSS 2008), 17–19 June 2008, pp. 181–188.

    Google Scholar 

  29. Nasiri, A., Zabalawi, S. A., & Mandic, G. (2009). Indoor power harvesting using photovoltaic cells for low-power applications. IEEE Transactions on Industrial Electronics, 56(11), 4502–4509.

    Google Scholar 

  30. Ramadass, Y. K., & Chandrakasan, A. P. (2008). Minimum energy tracking loop with embedded DC–DC converter enabling ultra-low-voltage operation down to 250 mV in 65 nm CMOS. IEEE Journal of Solid-State Circuits, 43(1), 256–265.

    Google Scholar 

  31. Jiang, X., Polastre, J., & Culler, D. (2005). Perpetual environmentally powered sensor networks. In Fourth International Symposium on Information Processing in Sensor Networks (IPSN 2005), 15 April 2005, pp. 463–468.

    Google Scholar 

  32. Sudevalayam, S., & Kulkarni, P. (2011). Energy harvesting sensor nodes: Survey and implications. IEEE Communications Surveys and Tutorials, 13(3), 443–461.

    Article  Google Scholar 

  33. Torres, E. O., & Rincón-Mora, G. A. (2009). Electrostatic energy-harvesting and battery-charging CMOS system prototype. IEEE Transactions on Circuits and Systems I: Regular Papers, 56(9), 1938–1948.

    Google Scholar 

  34. Rabaey, J., Burghardt, F., Steingart, D., Seeman, M., & Wright, P. (2007). Energy harvesting—a systems perspective. In Proceedings of IEEE International Electron Devices Meeting (IEDM 2007), 10–12 December 2007, pp. 363–366.

    Google Scholar 

  35. Shao, H, Tsui, C.-Y., & Ki, W.-H. (2009). The design of a micro power management system for applications using photovoltaic cells with the maximum output power control. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 17(8), 1138–1142.

    Google Scholar 

  36. Shao, H., Tsui, C.-Y., & Ki, W.-H. (2007). An inductor-less micro solar power management system design for energy harvesting applications. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS 2007), 27–30 May 2007, pp. 1353–1356.

    Google Scholar 

  37. Ultralife Batteries. Product summary guide [Online]. Available http://www.awilco-multiplex.dk/files/pdf/Batteries%20Li-Ion/Product_Summary_Guide.pdf.

  38. Zubieta, L., & Bonert, R. (2000). Characterization of double-layer capacitors for power electronics applications. IEEE Transactions on Industry Applications, 36(1), 199–205.

    Article  Google Scholar 

  39. Naveen, K. V., & Manjunath, S. S. (2011). A reliable ultracapacitor based solar energy harvesting system for wireless sensor network enabled intelligent buildings. In Proceedings of the 2nd International Conference on Intelligent Agent and Multi-Agent Systems (IAMA 2011), 7–9 September 2011, pp. 20–25.

    Google Scholar 

  40. Maxwell Technologies. Datasheet K2 series ultracapacitors [Online]. Available http://www.maxwell.com/products/ultracapacitors/docs/datasheet_k2_series_1015370.pdf.

  41. Chou, P. H., & Park, C. (2005). Energy-efficient platform designs for real-world wireless sensing applications. In Proceedings of the IEEE ACM International Conference on Computer-Aided Design (ICCAD-2005), 6–10 November 2005, pp. 913–920.

    Google Scholar 

  42. Simjee, F., & Chou, P. H. (2006). Everlast: Long-life, super-capacitor-operated wireless sensor node. In Proceedings of the 2006 International Symposium on Low Power Electronics and Design (ISLPED’06), 4–6 October 2006, pp. 197–202.

    Google Scholar 

  43. Nagayoshi, H., Tokumisu, K., & Kajikawa, T. (2007). Evaluation of multi MPPT thermoelectric generator system. In Proceedings of the 26th International Conference on Thermoelectrics (ICT 2007), 3–7 June 2007, pp. 318–321.

    Google Scholar 

  44. Kong, N., & Ha, D. S. (2012). Low-power design of a self-powered piezoelectric energy harvesting system with maximum power point tracking. IEEE Transactions on Power Electronics, 27(5), 2298–2308.

    Google Scholar 

  45. Dolgov, A., Zane, R., & Popovic, Z. (2010). Power management system for online low power RF energy harvesting optimization. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(7), 1802–1811.

    Google Scholar 

  46. Zhong, Z.-D., Huo, H.-B., Zhu, X.-J., Cao, G.-Y., & Ren, Y. (2008). Adaptive maximum power point tracking control of fuel cell power plants. Journal of Power Sources, 176(1), 259–269.

    Google Scholar 

  47. Mashohor, S., Samsudin, K., Noor, A. M., & Rahman, A. R. A. (2008). Evaluation of genetic algorithm based solar tracking system for photovoltaic panels. In Proceedings of the IEEE International Conference on Sustainable Energy Technologies (ICSET 2008), 24–27 November 2008, pp. 269–273.

    Google Scholar 

  48. Esram, T., & Chapman, P. L. (2007). Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques. IEEE Transactions on Energy Conversion, 22(2), 439–449.

    Google Scholar 

  49. Lee, D.-Y., Noh, H.-J., Hyun, D.-S., & Choy, I. (2003). An improved MPPT converter using current compensation method for small scaled PV-applications. In Proceedings of the Eighteenth Annual IEEE Applied Power Electronics Conference and Exposition (APEC’03), 9–13 February 2003, Vol. 1, pp. 540–545.

    Google Scholar 

  50. Lim, Y. H., & Hamill, D. C. (2001). Synthesis, simulation and experimental verification of a maximum power point tracker from nonlinear dynamics. In Proceedings of the IEEE 32nd Annual Power Electronics Specialists Conference (PESC 2001), 17–21 June 2001, Vol. 1, pp. 199–204.

    Google Scholar 

  51. Esram, T., Kimball, J. W., Krein, P. T., Chapman, P. L., & Midya, P. (2006). Dynamic maximum power point tracking of photovoltaic arrays using ripple correlation control. IEEE Transactions on Power Electronics, 21(5), 1282–1291.

    Google Scholar 

  52. Midya, P., Krein, P. T., Turnbull, R. J., Reppa, R., & Kimball, J. (1996). Dynamic maximum power point tracker for photovoltaic applications. In Conference Records of the 27th Annual IEEE Power Electronics Specialists Conference (PESC’96), 23–27 June 1996, Vol. 2, pp. 1710–1716.

    Google Scholar 

  53. Kiranmai, K. S. P., & Veerachary, M. (2006). A single-stage power conversion system for the PV MPPT application. In Proceedings of the IEEE International Conference on Industrial Technology (ICIT 2006), 15–17 December 2006, pp. 2125–2130.

    Google Scholar 

  54. Wang, W., Wang, N., Jafer, E., Hayes, M., O’Flynn, B., & O’Mathuna, C. (2010). Autonomous wireless sensor network based building energy and environment monitoring system design. In Proceedings of the 2nd Conference on Environmental Science and Information Application Technology (ESIAT), 17–18 July 2010, pp. 367–372.

    Google Scholar 

  55. Tan, Y. K., & Panda, S. K. (2011). Energy harvesting from hybrid indoor ambient light and thermal energy sources for enhanced performance of wireless sensor nodes. IEEE Transactions on Industrial Electronics, 58(9), September 2011, pp. 4424–4435.

    Google Scholar 

  56. Javanmard, N., Vafadar, G., & Nasiri, A. (2009). Indoor power harvesting using photovoltaic cells for low power applications. In Proceedings of the 13th European Conference on Power Electronics and Applications (EPE’09), 8–10 September 2009, pp. 1–10.

    Google Scholar 

  57. Wang, W. S., O’Donnell, T., Ribetto, L., O’Flynn, B., Hayes, M., & O’Mathuna, C. (2009). Energy harvesting embedded wireless sensor system for building environment applications. In Proceedings of the 1st International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace and Electronic Systems Technology (Wireless VITAE 2009), 17–20 May 2009, pp. 36–41.

    Google Scholar 

  58. Yu, H., Wu, H., & Wen, Y. (2010). An ultra-low input voltage power management circuit for indoor micro-light energy harvesting system. In Proceedings of the IEEE Sensors 2010, 1–4 November 2010, pp. 261–264.

    Google Scholar 

  59. Hande, A., Polk, T., Walker, W., & Bhatia, D. (2007). Indoor solar energy harvesting for sensor network router nodes. Microprocessors and Microsystems, 31(6), 420–432.

    Google Scholar 

  60. Ferri, M., Pinna, D., Dallago, E., & Malcovati, P. (2009). A 0.35 μm CMOS Solar energy scavenger with power storage management system. In Proceedings of the Ph.D. Research in Microelectronics and Electronics (PRIME 2009), 12–17 July 2009, pp. 88–91.

    Google Scholar 

  61. Brunelli, D., & Benini, L. (2009). Designing and managing sub-milliwatt energy harvesting nodes: Opportunities and challenges. In Proceedings of the 1st International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace and Electronic Systems Technology Wireless (VITAE 2009), 17–20 May 2009, pp. 11–15.

    Google Scholar 

  62. Brunelli, D., Moser, C., Thiele, L., & Benini, L. (2009). Design of a solar-harvesting circuit for batteryless embedded systems. IEEE Transactions on Circuits and Systems I: Regular Papers, 56(11), November 2009, pp. 2519–2528.

    Google Scholar 

  63. Shao, H., Tsui, C.-Y., & Ki, W.-H. (2009). An inductor-less MPPT design for light energy harvesting systems. In Proceedings of the Asia and South Pacific Design Automation Conference (ASP-DAC 2009), 19–22 January 2009, pp. 101–102.

    Google Scholar 

  64. Kim, Y., Jo, H., & Kim, D. (1996). A new peak power tracker for cost-effective photovoltaic power system. In Proceedings of the 31st Intersociety Energy Conversion Engineering Conference (IECEC 96), 11–16 August 1996, Vol. 3, pp. 1673–1678.

    Google Scholar 

  65. Lim, Y. H., & Hamill, D. C. (2000). Simple maximum power point tracker for photovoltaic arrays. Electronics Letters, 36(11), pp. 997–999.

    Google Scholar 

  66. Faranda, R., Leva, S., & Maugeri, V. (2008). MPPT techniques for PV Systems: Energetic and cost comparison. In Proceedings of the IEEE Power and Energy Society General Meeting—Conversion and Delivery of Electrical Energy in the 21st Century, 20–24 July 2008, pp. 1–6.

    Google Scholar 

  67. Shimizu, T., Hirakata, M., Kamezawa, T., & Watanabe, H. (2001). Generation control circuit for photovoltaic modules. IEEE Transactions on Power Electronics, 16(3), 293–300.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Manuel Ferreira Carvalho .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ferreira Carvalho, C.M., Paulino, N.F.S.V. (2016). Voltage Step-up Circuits. In: CMOS Indoor Light Energy Harvesting System for Wireless Sensing Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-21617-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21617-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21616-4

  • Online ISBN: 978-3-319-21617-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics