Skip to main content

Abstract

This chapter presents a literature review about the various ambient energy sources that can be harvested and the description of some related systems. As such, this chapter will provide a brief overview about each source and describe some systems that use that same energy source. This will be extended on to the domain of the wireless sensor networks and the aspects related to it, being presented some examples of energy harvesting powered WSN in different environments. A brief description of what is expected from each network and how it succeeds in harvesting the energy that enables it to work will receive a particular focus. Since light is the energy source being harvested, in order to power the system described in this book, some more attention will be dedicated to the analysis of this source. Proceeding with this purpose, a more detailed overview about PV technologies will be given in Chap. 3. In addition, a more focused insight covering DC–DC converters, energy storing devices, and MPPT techniques will be given in Chap. 4, so as to complete the literature review opened up in the present chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chalasani, S., & Conrad, J. M. (2008). A survey of energy harvesting sources for embedded systems. In Proceedings of IEEE Southeastcon 2008, 3–6 April 2008, pp. 442–447.

    Google Scholar 

  2. Chou, P. H., & Park, C. (2005). Energy-efficient platform designs for real-world wireless sensing applications. In Proceedings of the IEEE ACM International Conference on Computer-Aided Design (ICCAD-2005), 6–10 November 2005, pp. 913–920.

    Google Scholar 

  3. Lhermet, H., Condemine, C., Plissonnier, M., Salot, R., Audebert, P., & Rosset, M. (2008). Efficient power management circuit: thermal energy harvesting to above-IC microbattery energy storage. IEEE Journal of Solid-State Circuits, 43(1), 246–255.

    Google Scholar 

  4. Tan, Y. K., & Panda, S. K. (2011). Energy harvesting from hybrid indoor ambient light and thermal energy sources for enhanced performance of wireless sensor nodes. IEEE Transactions on Industrial Electronics, 58(9), September 2011, pp. 4424–4435.

    Google Scholar 

  5. Saggini, S., Ongaro, F., Galperti, C., & Mattavelli, P. (2010). Supercapacitor-based hybrid storage systems for energy harvesting in wireless sensor networks. In Proceedings of the 25th Annual IEEE Applied Power Electronics Conference and Exposition (APEC 2010), 21–25 February 2010, pp. 2281–2287.

    Google Scholar 

  6. Colomer, J., Miribel-Catala, P., Saiz-Vela, A., & Samitier, J. (2010). A multi-harvested self-powered system in a low-voltage low-power technology. IEEE Transactions on Industrial Electronics, 58(9), 4250–4263.

    Google Scholar 

  7. Lee, Y., Bang, S., Lee, I., Kim, Y., Kim, G., Ghaed, M. H., Pannuto, P., Dutta, P., Sylvester, D., & Blaauw, D. (2013). A modular 1 mm3 die-stacked sensing platform with low power I2C inter-die communication and multi-modal energy harvesting. IEEE Journal of Solid-State Circuits, 48(1), January 2013, pp. 229–243.

    Google Scholar 

  8. Moore, G. E. (1965). Cramming more componentes onto integrated circuits. Electronics, 38(8).

    Google Scholar 

  9. Courtland, R. (2013). The end of the shrink. IEEE Spectrum, 50(11), 26–29.

    Google Scholar 

  10. Carli, D., Brunelli, D., Bertozzi, D., & Benini, L. (2010). A high-efficiency wind-flow energy harvester using micro turbine. In Proceedings of the International Symposium on Power Electronics Electrical Drives Automation and Motion (SPEEDAM), 14–16 June 2010, pp. 778–783.

    Google Scholar 

  11. Trapanese, M. (2008). Optimization of a sea wave energy harvesting electromagnetic device. IEEE Transactions on Magnetics, 44(11), 4365–4368.

    Google Scholar 

  12. Ramadass, Y. K., & Chandrakasan, A. P. (2010). An efficient piezoelectric energy harvesting interface circuit using a bias-flip rectifier and shared inductor. IEEE Journal of Solid-State Circuits, 45(1), 189–204.

    Google Scholar 

  13. Dallago, E., Danioni, A., Marchesi, M., Nucita, V., & Venchi, G. (2011). A self-powered electronic interface for electromagnetic energy harvester. IEEE Transactions on Power Electronics, 26(11), 3174–3182.

    Google Scholar 

  14. Kong, N., & Ha, D. S. (2012). Low-power design of a self-powered piezoelectric energy harvesting system with maximum power point tracking. IEEE Transactions on Power Electronics, 27(5), 2298–2308.

    Google Scholar 

  15. Torres, E. O., & Rincón-Mora, G. A. (2009). Electrostatic energy-harvesting and battery-charging CMOS system prototype. IEEE Transactions on Circuits and Systems I: Regular Papers, 56(9), 1938–1948.

    Google Scholar 

  16. Kumar, S. S., & Kashwan, K. R. (2013). Research study of energy harvesting in wireless sensor networks. International Journal of Renewable Energy Research (IJRER), 3(3), 745–753.

    Google Scholar 

  17. Paradiso, J. A., & Starner, T. (2005). Energy scavenging for mobile and wireless electronics. IEEE Pervasive Computing, 4(1), 18–27.

    Article  Google Scholar 

  18. Rabaey, J., Burghardt, F., Steingart, D., Seeman, M., & Wright, P. (2007). Energy harvesting—a systems perspective. In Proceedings of IEEE International Electron Devices Meeting (IEDM 2007), 10–12 December 2007, pp. 363–366.

    Google Scholar 

  19. Roundy, S., Wright, P., & Rabaey, J. (2003). Energy scavenging for wireless sensor networks with special focus on vibrations. Boston: Kluwer Academic Press.

    Google Scholar 

  20. Meninger, S., Mur-Miranda, J., Amirtharajah, R., Chandrakasan, A., & Lang, J. (2001). Vibration-to-electric energy conversion. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 9(1), 64–76.

    Google Scholar 

  21. Lu, X., Yang, S.-H. (2010). Thermal energy harvesting for WSNs. In Proceedings of the IEEE International Conference on Systems Man and Cybernetics (SMC 2010), 10–13 October 2010, pp. 3045–3052.

    Google Scholar 

  22. Becker, T., Kluge, M., Schalk, J., Otterpohl, T., & Hilleringmann, U. (2008). Power management for thermal energy harvesting in aircrafts. In Proceedings of the IEEE Sensors 2008 Conference, 26–29 October 2008, pp. 681–684.

    Google Scholar 

  23. Richelli, A., Colalongo, L., Tonoli, S., & Kovacs-Vajna, Z. M. (2009). A 0.2—1.2 V DC/DC boost converter for power harvesting applications. IEEE Transactions on Power Electronics, 24(6), 1541–1546.

    Google Scholar 

  24. Lim, J., Huang, C.-K., Ryan, M., Snyder, G. J., Herman, J., & Fleurial, J.-P. (2008). MEMS/ECD method for making Bi2−xSbxTe3 thermoelectric devices. NASA Tech Briefs, 32(7), NPO-30797.

    Google Scholar 

  25. Vadus, J. R. (2004). Some basic needs and concepts for 2020. In Proceedings of the Oceans’04 MTTS/IEEE Techno-Ocean’04, 9–12 November 2004, Vol. 1, p. 1.

    Google Scholar 

  26. Monfray, S., Puscasu, O., Savelli, G., Soupremanien, U., Ollier, E., Guerin, C., Frechette, L. G., Leveille, E., Mirshekari, G., Maitre, C., Coronel, P., Domanski, K., Grabiec, P., Ancey, P., Guyomar, D., Bottarel, V., Ricotti, G., Boeuf, F., Gaillard, F., & Skotnicki, T. (2012). Innovative thermal energy harvesting for zero power electronics. In Proceedings of the IEEE Silicon Nanoelectronics Workshop (SNW 2012), 10–11 June 2012, pp. 1–4.

    Google Scholar 

  27. Ravindran, S. K .T., Nilkund, P., Kroener, M., & Woias, P. (2013). Thermal energy harvesting using an electrostatic generator. In Proceedings of the IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS 2013), 20–24 January 2013, pp. 801–804.

    Google Scholar 

  28. Fernandes, J. R., Martins, M., & Piedade, M. (2010). An energy harvesting circuit for self-powered sensors. In Proceedings of the 17th International Conference on Mixed Design of Integrated Circuits and Systems (MIXDES), 24–26 June 2010, pp. 205–208.

    Google Scholar 

  29. Gonçalves, H., Martins, M., & Fernandes, J. (2012). A study on MOSFET rectifiers with transistors operating in the weak inversion region. In Proceedings of the 19th IEEE International Conference on Electronics, Circuits and Systems (ICECS 2012), 9–12 December 2012, pp. 665–668.

    Google Scholar 

  30. Visser, H. J., Reniers, A. C. F., Theeuwes, J. A. C. (2008). Ambient RF energy scavenging: GSM and WLAN power density measurements. In Proceedings of the 38th European Microwave Conference (EuMC 2008), 27–31 October 2008, pp. 721–724.

    Google Scholar 

  31. Tucker, C. A., Warwick, K., & Holderbaum, W. (2013). A contribution to the wireless transmission of power. International Journal of Electrical Power and Energy Systems, 47, 235–242.

    Google Scholar 

  32. Mikeka, C., Arai, H., Georgiadis, A., & Collado, A. (2011). DTV band micropower RF energy-harvesting circuit architecture and performance analysis. In Proceedings of the IEEE International Conference on RFID-Technologies and Applications (RFID-TA 2011), 15–16 September 2011, pp. 561–567.

    Google Scholar 

  33. Parks, A. N., Sample, A. P., Zhao, Y., & Smith, J. R. (2013). A wireless sensing platform utilizing ambient RF energy. In Proceedings of the IEEE Radio and Wireless Symposium (RWS 2013), 20–23 January 2013, pp. 331–333.

    Google Scholar 

  34. Mikeka, C., & Arai, H. (2011). Dual-band RF energy-harvesting circuit for range enhancement in passive tags. In Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), 11–15 April 2011, pp. 1210–1214.

    Google Scholar 

  35. Kim, J., Nam, C., & Lee, K.-Y. (2010). A design of transceiver for 13.56 MHz RFID reader using the peak detector with automatic reference voltage generator and voltage limiter. In Proceedings of the International SoC Design Conference (ISOCC 2010), 22–23 November 2010, pp. 287–289.

    Google Scholar 

  36. Fernandez, E., Beriain, A., Solar, H., Garcia-Alonso, A., Berenguer, R., Sosa, J., Monzon, J. M., Garcia-Alonso, S., & Montiel-Nelson, J. A. (2011). Low power voltage limiter design for a full passive UHF RFID sensor. In Proceedings of the IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS 2011), 7–10 August 2011, pp. 1–4.

    Google Scholar 

  37. Starner, T. (1996). Human-powered wearable computing. IBM Systems Journal, 35(3 & 4), 618–629.

    Article  Google Scholar 

  38. Zeng, P., Chen, H., Yang, Z., & Khaligh, A. (2011). Unconventional wearable energy harvesting from human horizontal foot motion. In Proceedings of the 26th Annual IEEE Applied Power Electronics Conference and Exposition (APEC 2011), 6–11 March 2011, pp. 258–264.

    Google Scholar 

  39. Hayakawa, M. (1991). Electric wristwatch with generator. U.S. Patent 5 001 685, March 1991.

    Google Scholar 

  40. Mitcheson, P. D. (2010). Energy harvesting for human wearable and implantable bio-sensors. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2010), 31 August 2010–4 September 2010, pp. 3432–3436.

    Google Scholar 

  41. Hoang, D. C., Tan, Y. K., Chng, H. B., & Panda, S. K. (2009). Thermal energy harvesting from human warmth for wireless body area network in medical healthcare system. In Proceedings of the International Conference on Power Electronics and Drive Systems (PEDS 2009), 2–5 November 2009, pp. 1277–1282.

    Google Scholar 

  42. Shahhaidar, E., Boric-Lubecke, O., Ghorbani, R., & Wolfe, M. (2011). Electromagnetic generator: As respiratory effort energy harvester. In Proceedings of the IEEE Power and Energy Conference at Illinois (PECI 2011), 25–26 February 2011, pp. 1–4.

    Google Scholar 

  43. Paulides, J. J. H., Jansen, J. W., Encica, L., Lomonova, E. A., & Smit, M. (2011). Power from the people. IEEE Industry Applications Magazine, 17(5), 20–26.

    Article  Google Scholar 

  44. Elvin, N. G., & Elvin, A. A. (2013). Vibrational energy harvesting from human gait. IEEE/ASME Transactions on Mechatronics, 18(2), 637–644.

    Google Scholar 

  45. Luciano, V., Sardini, E., Serpelloni, M., & Baronio, G. (2012). Analysis of an electromechanical generator implanted in a human total knee prosthesis. In Proceedings of the IEEE Sensors Applications Symposium (SAS 2012), 7–9 February 2012, pp. 1–5.

    Google Scholar 

  46. Tsai, J., Wang, J., & Su, Y. (2013). Piezoelectric rubber films for human physiological monitoring and energy harvesting. In Proceedings of the IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS 2013), 20–24 January 2013, pp. 841–844.

    Google Scholar 

  47. Hwang, J. H., Kang, T. W., Hyoung, C. H., & Kang, S. W. (2012). Receptive properties of the human body of emitted electromagnetic waves for energy harvesting. In IEEE International Symposium on Antennas and Propagation Society (APSURSI 2012), 8–14 July 2012, pp. 1–2.

    Google Scholar 

  48. Hwang, J. H., Hyoung, C. H., Park, K. H., & Kim, Y. T. (2013). Energy harvesting from ambient electromagnetic wave using human body as antenna. Electronics Letters, 49(2), 17 January 2013, pp. 149–151.

    Google Scholar 

  49. Meehan, A., Gao, H., & Lewandowski, Z. (2011). Energy harvesting with microbial fuel cell and power management system. IEEE Transactions on Power Electronics, 26(1), January 2011, pp. 176–181.

    Google Scholar 

  50. Chen, Y., Twigg, C. M., Sadik, O. A., & Tong, S. (2011). A self-powered adaptive wireless sensor network for wastewater treatment plants. In IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops 2011), 21–25 March 2011, pp. 356–359.

    Google Scholar 

  51. Park, J.-D., & Ren, Z. (2011). Efficient energy harvester for microbial fuel cells using DC/DC converters. In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE 2011), 17–22 September 2011, pp. 3852–3858.

    Google Scholar 

  52. Kung, C.-C., Liu, C.-C., Sun, Y., & Yu, X. (2012). Innovative Microbial Fuel cell for energy harvesting. In Proceedings of the IEEE Energytech 2012, 29–31 May 2012, pp. 1–4.

    Google Scholar 

  53. Chen, C. J. (2011). Physics of solar energy. Hoboken: Wiley.

    Book  Google Scholar 

  54. Šúri M., Huld T. A., Dunlop E. D., & Ossenbrink H. A. (2007). Potential of solar electricity generation in the European Union member states and candidate countries. Solar Energy, 81, 1295–1305. Available http://re.jrc.ec.europa.eu/pvgis/

  55. Huld, T., Müller, R., & Gambardella, A. (2012). A new solar radiation database for estimating PV performance in Europe and Africa. Solar Energy, 86, 1803–1815.

    Article  Google Scholar 

  56. Randall, J. F., & Jacot, J. (2003). Is AM1.5 applicable in practice? Modelling eight photovoltaic materials with respect to light intensity and two spectra. Renewable Energy, 28(12), 1851–1864.

    Google Scholar 

  57. Weddel, A. S., Merret, G. V., & Al-Hashimi, B. M. (2012). Photovoltaic sample-and-hold circuit enabling MPPT indoors for low-power systems. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(6), pp. 1196–1204.

    Google Scholar 

  58. Hande, A., Polk, T., Walker, W., & Bhatia, D. (2007). Indoor solar energy harvesting for sensor network router nodes. Microprocessors and Microsystems, 31(6), 420–432.

    Google Scholar 

  59. Nasiri, A., Zabalawi, S. A., & Mandic, G. (2009). Indoor power harvesting using photovoltaic cells for low-power applications. IEEE Transactions on Industrial Electronics, 56(11), 4502–4509.

    Google Scholar 

  60. Javanmard, N., Vafadar, G., & Nasiri, A. (2009). Indoor power harvesting using photovoltaic cells for low power applications. In Proceedings of the 13th European Conference on Power Electronics and Applications (EPE’09), 8–10 September 2009, pp. 1–10.

    Google Scholar 

  61. Wang, W. S., O’Donnell, T., Wang, N., Hayes, M., O’Flynn, B., & O’Mathuna, C. (2010). Design considerations of sub-mW indoor light energy harvesting for wireless sensor systems. ACM Journal on Emerging Technologies in Computing Systems (JETC), 6(2), article 6.

    Google Scholar 

  62. Dondi, D., Bertacchini, A., Larcher, L., Pavan, P., Brunelli, D., & Benini, L. (2008). A solar energy harvesting circuit for low power applications. In Proceedings of the IEEE International Conference on Sustainable Energy Technologies (ICSET 2008), 24–27 November 2008, pp. 945–949.

    Google Scholar 

  63. Jeong, J., Jiang, X., & Culler, D. (2008). Design and analysis of micro-solar power systems for wireless sensor networks. In Proceedings of the 5th International Conference on Networked Sensing Systems (INSS 2008), 17–19 June 2008, pp. 181–188.

    Google Scholar 

  64. Sharma, N., Gummeson, J., Irwin, D., & Shenoy, P. (2010). Cloudy Computing: Leveraging Weather Forecasts in Energy Harvesting Sensor Systems. In Proceedings of the 7th Annual IEEE Communications Society Conference on Sensor Mesh and Ad Hoc Communications and Networks (SECON 2010), 21–25 June 2010, pp. 1–9.

    Google Scholar 

  65. Lee, J. S., Hornsey, R. I., & Renshaw, D. (2003). Analysis of CMOS Photodiodes I—Quantum efficiency. IEEE Transactions on Electron Devices, 50(5), pp. 1233–1238.

    Google Scholar 

  66. Lee, J. S., Hornsey, R. I., & Renshaw, D. (2003). Analysis of CMOS photodiodes II—lateral photoresponse. IEEE Transactions on Electron Devices, 50(5), pp. 1239–1245.

    Google Scholar 

  67. Esram, T., & Chapman, P. L. (2007). Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques. IEEE Transactions on Energy Conversion, 22(2), 439–449.

    Google Scholar 

  68. Guilar, N. J., Kleeburg, T. J., Chen, A., Yankelevich, D. R., & Amirtharajah, R. (2009). Integrated solar energy harvesting and storage. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 17(5), 627–637.

    Google Scholar 

  69. Guilar, N. J., Fong, E. G., Kleeburg, T., Yankelevich, D. R., & Amirtharajah, R. (2008). Energy harvesting photodiodes with integrated 2D diffractive storage capacitance. In Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design (ISLPED), 11–13 August 2008, pp. 63–68.

    Google Scholar 

  70. Ferri, M., Pinna, D., Dallago, E., & Malcovati, P. (2009). A 0.35 μm CMOS Solar energy scavenger with power storage management system. In Proceedings of the Ph.D. Research in Microelectronics and Electronics (PRIME 2009), 12–17 July 2009, pp. 88–91.

    Google Scholar 

  71. Ferri, M., Pinna, D., Malcovati, P., Dallago, E., & Ricotti, G. (2009). Integrated stabilized photovoltaic energy harvester. In Proceedings of the 16th IEEE International Conference on Electronics, Circuits and Systems (ICECS 2009), 13–16 December 2009, pp. 299–302.

    Google Scholar 

  72. Barnett, A., Honsberg, C., Kirkpatrick, D., Kurtz, S., Moore, D., Salzman, D., Schwartz, R., Gray, J., Bowden, S., Goossen, K., Haney, M., Aiken, D., Wanlass, M., & Emery, K. (2006). 50 % efficient solar cell architectures and designs. In Conference records of the IEEE 4th World Conference on Photovoltaic Energy Conversion, May 2006, Vol. 2, pp. 2560–2564.

    Google Scholar 

  73. Amaral, A., Lavareda, G., Carvalho, C. N., Brogueira, P., Gordo, P. M., Subrahmanyam, V. S., Gil, C. L., Naia, V. D., & Lima, A. P. (2002). Influence of the a-Si:H structural defects studied by positron annihilation on the solar cells characteristics. Thin Solid Films, 403404, 539–542.

    Google Scholar 

  74. Ramanan, A. V., Pakirisamy, M., & Williamson, S. S. (2011). Photosynthetic electrochemical cell charging infrastructure versus photovoltaic cell charging infrastructure for future electric vehicles. In Proceedings of the IEEE Vehicle Power and Propulsion Conference (VPPC 2011), 6–9 September 2011, pp. 1–5.

    Google Scholar 

  75. Sudevalayam, S., & Kulkarni, P. (2011). Energy harvesting sensor nodes: Survey and implications. IEEE Communications Surveys and Tutorials, 13(3), 443–461.

    Article  Google Scholar 

  76. Kansal, A., Hsu, J., Zahedi, S., & Srivastava, M. B. (2007). Power management in energy harvesting sensor networks. ACM Transactions on Embedded Computing Systems, 6, 2007.

    Article  Google Scholar 

  77. Vigorito, C. M., Ganesan, D., & Barto, A. G. (2007). Adaptive control of duty cycling in energy-harvesting wireless sensor networks. In Proceedings of the 4th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON 2007), 18–21 June 2007, pp. 21–30.

    Google Scholar 

  78. Sun, Z.-J., Li, W.-B., Xiao, H.-F., & Xu, L. (2010). The Research on Solar Power System of Wireless Sensor Network Node for Forest Monitoring. In Proceedings of the International Conference on Web Information Systems and Mining (WISM 2010), 23–24 October 2010, Vol. 2, pp. 395–398.

    Google Scholar 

  79. Wang, W., Wang, N., Jafer, E., Hayes, M., O’Flynn, B., & O’Mathuna, C. (2010). Autonomous wireless sensor network based building energy and environment monitoring system design. In Proceedings of the 2nd Conference on Environmental Science and Information Application Technology (ESIAT), 17–18 July 2010, pp. 367–372.

    Google Scholar 

  80. Thewes, M., Scholl, G., & Li, X. (2012). Wireless energy autonomous sensor networks for automobile safety systems. In Proceedings of the 9th International Multi-Conference on Systems, Signals and Devices (SSD 2012), 20–23 March 2012, pp. 1–5.

    Google Scholar 

  81. Park, G., Rosing, T., Todd, M., Farrar, C., & Hodgkiss, W. (2008). Energy Harvesting for Structural Health Monitoring Sensor Networks. Journal of Infrastructure Systems, 14(1), 64–79.

    Google Scholar 

  82. Gutiérrez, A., Dopico, N. I., Gonzalez, C., Zazo, S., Jimenez-Leube, J., & Raos, I. (2013). Cattle-Powered Node Experience in a Heterogeneous Network for Localization of Herds. IEEE Transactions on Industrial Electronics, 60(8), 3176–3184.

    Google Scholar 

  83. Wang, W. S., O’Donnell, T., Ribetto, L., O’Flynn, B., Hayes, M., & O’Mathuna, C. (2009). Energy harvesting embedded wireless sensor system for building environment applications. In Proceedings of the 1st International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace and Electronic Systems Technology (Wireless VITAE 2009), 17–20 May 2009, pp. 36–41.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Manuel Ferreira Carvalho .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ferreira Carvalho, C.M., Paulino, N.F.S.V. (2016). Energy Harvesting Electronic Systems. In: CMOS Indoor Light Energy Harvesting System for Wireless Sensing Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-21617-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21617-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21616-4

  • Online ISBN: 978-3-319-21617-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics