Compositional Variations in Palladium Electrodes Exposed to Electrolysis

  • A. Carpinteri
  • O. Borla
  • A. Goi
  • S. Guastella
  • A. Manuello
  • R. Sesana
  • D. Veneziano
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)

Abstract

Literature presents several cases of nuclear anomalies occurring in condensed matter, during fracture of solids, cavitation of liquids, and electrolysis experiments.

Previous papers by the authors have recently shown that, on the surface of the electrodes exposed to electrolysis visible cracks and compositional changes are strictly related to nuclear particle emissions. In particular, a mechanical interpretation of the phenomenon was provided accounting to the hydrogen embrittlement effects. Piezonuclear reactions were considered responsible for the neutron and alpha particle emissions detected during the electrolysis. Such effects are thoroughly studied in a new experimental campaign, where three pure palladium (100 % Pd) cathodes coupled with Ni anodes are used for electrolysis, separately exposed to processes of different duration: 2.5 h, 5 h and 10 h, respectively. In this paper, the authors intend to show the new results concerning the changes on the surface of the electrodes in terms of composition and presence of cracks after the electrolytic process. Measures of heat generation as well as of neutron emission will be reported.

Keywords

Hydrogen embrittlement Cold fusion Electrolysis Piezonuclear reactions Neutron emission Energy balance 

References

  1. 1.
    Borghi, D.C., Giori, D.C., Dall’Olio, A.: Experimental evidence on the emission of neutrons from cold hydrogen plasma. Proceedings of the International Workshop on Few-body Problems in Low-energy Physics, Alma-Ata, Kazakhstan, pp. 147–154 (1992); Unpublished Communication (1957); Comunicacao n. 25 do CENUFPE, Recife Brazil (1971)Google Scholar
  2. 2.
    Diebner, K.: Fusionsprozesse mit Hilfe konvergenter Stosswellen—einige aeltere und neuere Versuche und Ueberlegungen. Kerntechnik. 3, 89–93 (1962)Google Scholar
  3. 3.
    Kaliski, S.: Bi-conical system of concentric explosive compression of D-T. J. Tech. Phys. 19, 283–289 (1978)MathSciNetGoogle Scholar
  4. 4.
    Winterberg, F.: Autocatalytic fusion–fission implosions. Atomenergie-Kerntechnik. 44, 146 (1984)Google Scholar
  5. 5.
    Derjaguin, B.V., et al.: Titanium fracture yields neutrons? Nature 34, 492 (1989)CrossRefGoogle Scholar
  6. 6.
    Fleischmann, M., Pons, S., Hawkins, M.: Electrochemically induced nuclear fusion of deuterium. J. Electroanal. Chem. 261, 301 (1989)CrossRefGoogle Scholar
  7. 7.
    Bockris, J.O’M., Lin, G.H., Kainthla, R.C., Packham, N.J.C., Velev, O.: Does tritium form at electrodes by nuclear reactions? In: The First Annual Conference on Cold Fusion. National Cold Fusion Institute, University of Utah Research Park, Salt Lake City (1990)Google Scholar
  8. 8.
    Preparata, G.: Some theories of cold fusion: a review. Fusion Technol. 20, 82 (1991)Google Scholar
  9. 9.
    Preparata, G.: A new look at solid-state fractures, particle emissions and “cold” nuclear fusion. Il Nuovo Cimento. 104A, 1259–1263 (1991)Google Scholar
  10. 10.
    Mills, R.L., Kneizys, P.: Excess heat production by the electrolysis of an aqueous potassium carbonate electrolyte and the implications for cold fusion. Fusion Technol. 20, 65 (1991)Google Scholar
  11. 11.
    Notoya, R., Enyo, M.: Excess Heat Production during Electrolysis of H2O on Ni, Au, Ag and Sn Electrodes in Alkaline Media, Proc. Third International Conference on Cold Fusion. Universal Academy Press, Tokyo (1992)Google Scholar
  12. 12.
    Miles, M.H., Hollins, R.A., Bush, B.F., Lagowski, J.J., Miles, R.E.: Correlation of excess power and helium production during D2O and H2O electrolysis using palladium cathodes. J. Electroanal. Chem. 346, 99–117 (1993)CrossRefGoogle Scholar
  13. 13.
    Bush, R.T., Eagleton, R.D.: Calorimetric studies for several light water electrolytic cells with nickel fibrex cathodes and electrolytes with alkali salts of potassium, rubidium, and cesium. In: Fourth International Conference on Cold Fusion. Lahaina, Maui. Electric Power Research Institute 3412 Hillview Ave., Palo Alto. (1993)Google Scholar
  14. 14.
    Fleischmann, M., Pons, S., Preparata, G.: Possible theories of cold fusion. Nuovo Cimento. Soc. Ital. Fis. A. 107, 143 (1994)CrossRefGoogle Scholar
  15. 15.
    Szpak, S., Mosier-Boss, P.A., Smith, J.J.: Deuterium uptake during Pd-D codeposition. J. Electroanal. Chem. 379, 121 (1994)CrossRefGoogle Scholar
  16. 16.
    Sundaresan, R., Bockris, J.O.M.: Anomalous reactions during arcing between carbon rods in water. Fusion Technol. 26, 261 (1994)Google Scholar
  17. 17.
    Arata, Y., Zhang, Y.: Achievement of solid-state plasma fusion (“cold-fusion”). Proc. Jpn Acad. 71B, 304–309 (1995)CrossRefGoogle Scholar
  18. 18.
    Ohmori, T., Mizuno, T., Enyo, M.: Isotopic distributions of heavy metal elements produced during the light water electrolysis on gold electrodes. J. New Energy. 1(3), 90 (1996)Google Scholar
  19. 19.
    Monti, R.A.: Low energy nuclear reactions: experimental evidence for the alpha extended model of the atom. J. New Energy. 1(3), 131 (1996)MathSciNetGoogle Scholar
  20. 20.
    Monti, R.A.: Nuclear transmutation processes of lead, silver, thorium, uranium. In: The Seventh International Conference on Cold Fusion. ENECO Inc. Vancouver (1998)Google Scholar
  21. 21.
    Ohmori, T., Mizuno, T.: Strong excess energy evolution, new element production, and electromagnetic wave and/or neutron emission in light water electrolysis with a tungsten cathode. Infinite Energy. 20, 14–17 (1998)Google Scholar
  22. 22.
    Mizuno, T.: Nuclear Transmutation: The Reality of Cold Fusion. Infinite Energy Press, Concord (1998)Google Scholar
  23. 23.
    Little, S.R., Puthoff, H.E., Little, M.E.: Search for Excess Heat from a Pt Electrode Discharge in K2CO3-H2O and K2CO3-D2O Electrolytes (1998)Google Scholar
  24. 24.
    Ohmori, T., Mizuno, T.: Nuclear transmutation reaction caused by light water electrolysis on tungsten cathode under incandescent conditions. Infinite Energy. 5(27), 34 (1999)Google Scholar
  25. 25.
    Ransford, H.E.: Non-stellar nucleosynthesis: transition metal production by DC plasma-discharge electrolysis using carbon electrodes in a non-metallic cell. Infinite Energy. 4(23), 16 (1999)Google Scholar
  26. 26.
    Storms, E.: Excess power production from platinum cathodes using the Pons-Fleischmann effect. In: 8th International Conference on Cold Fusion. Lerici (La Spezia). Italian Physical Society, Bologna. pp. 55–61 (2000)Google Scholar
  27. 27.
    Storms, E.: Science of Low Energy Nuclear Reaction: a Comprehensive Compilation of Evidence and Explanations about Cold Fusion. World Scientific, Singapore (2007)CrossRefGoogle Scholar
  28. 28.
    Mizuno, T., et al.: Production of heat during plasma electrolysis. Jpn. J. Appl. Phys. 39, 6055–6061 (2000)CrossRefGoogle Scholar
  29. 29.
    Warner, J., Dash, J., Frantz. S.: Electrolysis of D2O with titanium cathodes: enhancement of excess heat and further evidence of possible transmutation. In: The Ninth International Conference on Cold Fusion. Tsinghua University, Beijing, p. 404 (2002)Google Scholar
  30. 30.
    Fujii, M.F., et al.: Neutron emission from fracture of piezoelectric materials in deuterium atmosphere. Jpn. J. Appl. Phys. 41, 2115–2119 (2002)CrossRefGoogle Scholar
  31. 31.
    Mosier-Boss, P.A., et al.: Use of CR-39 in Pd/D co-deposition experiments. Eur. Phys. J. Appl. Phys. 40, 293–303 (2007)CrossRefGoogle Scholar
  32. 32.
    Swartz, M.: Three physical regions of anomalous activity in deuterated palladium. Infinite Energy 14, 19–31 (2008)Google Scholar
  33. 33.
    Mosier-Boss, P.A., et al.: Comparison of Pd/D co-deposition and DT neutron generated triple tracks observed in CR-39 detectors. Eur. Phys. J. Appl. Phys. 51(2), 20901–20911 (2010)CrossRefGoogle Scholar
  34. 34.
    Kanarev, M., Mizuno, T.: Cold fusion by plasma electrolysis of water. New Energy Technol. 1, 5–10 (2002)Google Scholar
  35. 35.
    Cardone, F., Mignani, R.: Energy and Geometry. World Scientific, Singapore (2004). Chapter 10MATHGoogle Scholar
  36. 36.
    Carpinteri, A., Cardone, F., Lacidogna, G.: Piezonuclear neutrons from brittle fracture: early results of mechanical compression tests. Strain. 45, 332–339 (2009). Atti dell’ Accademia delle Scienze di Torino. 33, 27–42 (2009)Google Scholar
  37. 37.
    Cardone, F., Carpinteri, A., Lacidogna, G.: Piezonuclear neutrons from fracturing of inert solids. Phys. Lett. A. 373, 4158–4163 (2009)CrossRefGoogle Scholar
  38. 38.
    Carpinteri, A., Cardone, F., Lacidogna, G.: Energy emissions from failure phenomena: mechanical, electromagnetic, nuclear. Exp. Mech. 50, 1235–1243 (2010)CrossRefGoogle Scholar
  39. 39.
    Carpinteri, A., Lacidogna, G., Manuello, A., Borla, O.: Piezonuclear fission reactions: evidences from microchemical analysis, neutron emission, and geological transformation. Rock. Mech. Rock. Eng. 45, 445–459 (2012)CrossRefGoogle Scholar
  40. 40.
    Carpinteri, A., Lacidogna, G., Manuello, A., Borla, O.: Piezonuclear fission reactions from earthquakes and brittle rocks failure: evidence of neutron emission and nonradioactive product elements. Exp. Mech. 53, 345–365 (2013)CrossRefGoogle Scholar
  41. 41.
    Carpinteri, A., Borla, O., Goi, A., Manuello, A., Veneziano, D.: Mechanical conjectures explaining cold nuclear fusion. Proceedings of the Conference & Exposition on Experimental and Applied Mechanics (SEM), Lombard, CD-ROM, p. 481 (2013)Google Scholar
  42. 42.
    Veneziano, D., Borla, O., Goi, A., Manuello, A., Carpinteri A.: Mechanical conjectures based on hydrogen embrittlement explaining cold nuclear fusion. Proceedings of the 21° Congresso Nazionale di Meccanica Teorica ed Applicata (AIMETA), Torino, CD-ROM (2013)Google Scholar
  43. 43.
    Carpinteri, A., Borla, O., Goi, A., Guastella, S., Manuello, A., Veneziano, D.: Hydrogen embrittlement and cold fusion effects in palladium during electrolysis experiments. In: Conference & Exposition on Experimental and Applied Mechanics (SEM), Greenville, vol. 6, pp. 37–47 (2014)Google Scholar
  44. 44.
    Milne, I., Ritchie, R.O., Karihaloo, B.: Comprehensive Structural Integrity: Fracture of Materials from Nano to Macro, vol. 6, pp. 31–33. Elsevier, Amsterdam (2003)Google Scholar
  45. 45.
    Liebowitz, H.: Fracture an Advanced Treatise. Academic, New York (1971)Google Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2016

Authors and Affiliations

  • A. Carpinteri
    • 1
  • O. Borla
    • 1
  • A. Goi
    • 4
  • S. Guastella
    • 2
  • A. Manuello
    • 1
  • R. Sesana
    • 3
  • D. Veneziano
    • 1
  1. 1.Department of Structural, Geotechnical and Building EngineeringPolitecnico di TorinoTorinoItaly
  2. 2.Department of Applied Science and Technology, Geotechnical and Building EngineeringPolitecnico di TorinoTorinoItaly
  3. 3.Department of Mechanical and Aerospace EngineeringPolitecnico di TorinoTorinoItaly
  4. 4.Private ResearchTorinoItaly

Personalised recommendations