Skip to main content

Abstract

Prompted by the intriguing results obtained by some of the rare-event searches looking for the dark matter that may make up the bulk of the matter in the Universe, we have studied brittle fracture as a background in scintillation detectors. Under conditions of ambient temperature and pressure, we have demonstrated a correlation between fracture, acoustic emission, and emission of light in several common scintillators. We present early results from an improved setup. When commissioned, it will provide additional channels to study these phenomena, in controllable atmospheres.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zwicky, F.: Die rotverschiebung von extragalaktischen nebeln. Helv. Phys. Acta 6, 110 (1933)

    Google Scholar 

  2. Schnee, R.W.: Physics of the Large and Small. In Csaki, C., Dodelson, S. (eds.) Proceedings of the 2009 Theoretical Advanced Study Institute in Elementary Particle Physics, p. 629. World Scientific, Singapore (2010)

    Google Scholar 

  3. Smith, N.J.T.: The SNOLAB deep underground facility. Eur. Phys. J. Plus 127, 108 (2012)

    Article  Google Scholar 

  4. Angloher, G., et al.: Limits on WIMP dark matter using sapphire cryogenic detectors. Astropart. Phys. 18, 43–55 (2002)

    Article  Google Scholar 

  5. Åström, J., et al.: Fracture processes observed with a cryogenic detector. Phys. Lett. A 356, 262–266 (2006)

    Article  MATH  Google Scholar 

  6. Agnese, R., et al.: Silicon detector dark matter results from the final exposure of CDMS II. Phys. Rev. Lett. 111, 251301 (2013). CDMS Collaboration

    Article  Google Scholar 

  7. Aalseth, C.E., et al.: CoGeNT: a search for low-mass dark matter using p-type point contact germanium detectors. Physical Review D 88, 012002 (2013). CoGeNT Collaboration

    Article  Google Scholar 

  8. Angloher, G., et al.: Results from 730 kg days of the CRESST-II dark matter search. Eur. Phys. J. C 22, 1971 (2012). CRESST-II Collaboration

    Article  Google Scholar 

  9. Bernabei, R., et al.: First results from DAMA/LIBRA and the combined results with DAMA/NaI. Eur. Phys. J. C 56, 333–355 (2008)

    Article  Google Scholar 

  10. Aprile, A., et al.: Dark matter results from 225 live days of XENON100 data. Phys. Rev. Lett. 109, 181301 (2012)

    Article  Google Scholar 

  11. Ahmed, Z., et al.: Dark matter search results from the CDMS II experiment. Science 327, 1619–1621 (2010). CDMS II Collaboration

    Article  Google Scholar 

  12. Agnese, R., et al.: Search for low-mass weakly interacting massive particles with SuperCDMS. Phys. Rev. Lett. 112, 241302 (2014). SuperCDMS Collaboration

    Article  Google Scholar 

  13. Agnese, R., et al.: Search for low-mass weakly interacting massive particles using voltage-assisted calorimetric ionization detection in the SuperCDMS experiment. Phys. Rev. Lett. 112, 041302 (2014). SuperCDMS Collaboration

    Article  Google Scholar 

  14. Armengaud, E., et al.: Search for low-mass WIMPs with EDELWEISS-II heat-and-ionization detectors. Phys. Rev. D. 86, 051701(R) (2012). EDELWEISS Collaboration

    Article  Google Scholar 

  15. Akerib, D.S., et al.: First results from the LUX dark matter experiment at the sanford underground research facility. Phys. Rev. Lett. 112, 091303 (2014). LUX Collaboration

    Article  Google Scholar 

  16. Archambault, S., et al.: Constraints on low-mass WIMP interactions on 19F from PICASSO. Phys. Lett. B 711, 153–161 (2012). PICASSO Collaboration

    Article  Google Scholar 

  17. Knoll, G.F.: Radiation detection and measurement, 3rd edn. Wiley, New York (2000)

    Google Scholar 

  18. Tantot, A., et al.: Sound and light from fractures in scintillators. Phys. Rev. Lett. 111, 154301 (2013)

    Article  Google Scholar 

  19. Langford, S.C., et al.: Simultaneous measurements of the electron and photon emission accompanying fracture of single-crystal MgO. J. App. Phys. 62, 1437 (1987)

    Article  Google Scholar 

  20. Tantot, A.: in preparation

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. C. F. Di Stefano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Di Stefano, P.C.F. et al. (2016). From Dark Matter to Brittle Fracture. In: Beese, A., Zehnder, A., Xia, S. (eds) Fracture, Fatigue, Failure and Damage Evolution, Volume 8. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-21611-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21611-9_23

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21610-2

  • Online ISBN: 978-3-319-21611-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics