1-Dimensional Synthetic Examples

  • A. John HainesEmail author
  • Lada L. Dimitrova
  • Laura M. Wallace
  • Charles A. Williams
Part of the SpringerBriefs in Earth Sciences book series (BRIEFSEARTH)


We present forward calculations of synthetic velocities, strain and VDoHS rates for faults. Scaling relationships using the strain and VDoHS rate curves provide a method for estimating fault properties: locking depth, dip and slip rate. We discuss the effects of discrete sampling and random noise. Shallow regions of marked heterogeneity at the Earth’s surface have negligible effect on the VDoHS rates. We illustrate our new inversion methodology using synthetic examples with randomly generated noise, obtaining VDoHS rates and from them associated strain rates. We demonstrate that VDoHS rates are much better than strain rates at distinguishing the signals from multiple closely spaced faults and, with sufficiently small data spacing and standard errors, can be used to identify and characterize individual faults. In addition, we show that our methodology is a more robust way of obtaining strain rates from point (GPS) velocities than current state-of-the art methodology.


Forward calculations Scaling relationships Strain and VDoHS rate curves Fault properties Discrete sampling Random noise Near surface heterogeneity Closely spaced faults Characterizing individual faults Robust strain rates 


  1. Aagaard B, Knepley M, Williams C (2013) A domain decomposition approach to implementing fault slip in finite-element models of quasi-static and dynamic crustal deformation. J Geophys Res Solid Earth 118:3059–3079. doi: 10.1002/jgrb.50217 CrossRefGoogle Scholar
  2. Beaumont C, Berger J (1974) Earthquake Prediction: modification of the Earth Tide Tilts and Strains by Dilatancy. Geophys J R Astron Soc 39:111–121CrossRefGoogle Scholar
  3. Beavan J, Haines J (2001) Contemporary horizontal velocity and strain rate fields of the Pacific-Australian plate boundary zone through New Zealand. J Geophys Tes 106(B1):741–770CrossRefGoogle Scholar
  4. Harlan W (1982) Avoiding interpolation artifacts in Stolt migration. In: Stanford exploration project, vol 30Google Scholar
  5. Kennett B (1983) Seismic wave propagation in stratified media. Cambridge University Press, CambridgeGoogle Scholar
  6. Lanczos C (1966) Discourse on Fourier series. Oliver & Boyd, LondonGoogle Scholar
  7. Okada Y (1985) Surface deformation due to shear and tensile faults in a half-space. Bull Seism Soc Am 75(4):1135–1154Google Scholar
  8. Okada Y (1992) Internal deformation due to shear and tensile faults in a half-space. Bull Seism Soc Am 82(2):1018–1040Google Scholar
  9. Owen M (2007) Practical signal processing. Cambridge University Press, CambridgeGoogle Scholar
  10. Robinson E, Treitel S (2008) Digital imaging and deconvolution: the ABCs of seismic exploration and processing. In: Fitterman D, Lines L (eds) Geophysical references series no. 15. Society of Exploration Geophysicists, TulsaGoogle Scholar
  11. Rybicki K (1973) Static deformation of a multilayered half-space by a very long strike-slip fault. Pure Appl Geophys 110:1955–1966CrossRefGoogle Scholar
  12. Savage J (1980) Dislocations in seismology. In: Nabarro F (ed) Dislocations in Solids, 3rd edn. North-Holland, AmsterdamGoogle Scholar
  13. Savage J (1983) A dislocation model of strain accumulation and release at a subduction zone. J Geophys Res 88(B6):4984–4996CrossRefGoogle Scholar
  14. Savage J, Burford R (1973) Geodetic determination of relative plate motion in central California. J Geophys Res 78(B5):832–845CrossRefGoogle Scholar
  15. Sheriff R, Geldart L (1982) Exploration seismology. Cambridge University Press, CambridgeGoogle Scholar
  16. Weertman J, Weertman J (1964) Elementary Dislocation Theory. Macmillan, New YorkGoogle Scholar
  17. Zhou H-W (2014) Practical seismic data analysis. Cambridge University Press, New YorkGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • A. John Haines
    • 1
    Email author
  • Lada L. Dimitrova
    • 2
  • Laura M. Wallace
    • 2
  • Charles A. Williams
    • 3
  1. 1.GNS ScienceDunedinNew Zealand
  2. 2.Institute for GeophysicsUniversity of TexasAustinUSA
  3. 3.GNS ScienceAvalonNew Zealand

Personalised recommendations