Advertisement

Inversion Methodology

  • A. John HainesEmail author
  • Lada L. Dimitrova
  • Laura M. Wallace
  • Charles A. Williams
Chapter
  • 373 Downloads
Part of the SpringerBriefs in Earth Sciences book series (BRIEFSEARTH)

Abstract

We explain the theory and implementation of the inversion methodology. Our initial grid is based on the locations of the GPS sites resulting in VDoHS rates dependent only on nearby values of observed GPS velocities. We create VDoHS rate basis functions on this grid and refine the grid to solve for the corresponding velocities. These velocity responses are used to invert the observed GPS velocities using Bayesian methodology based on the maximum entropy principle. We constrain the VDoHS rates to be as small as consistent with the observations, while limiting the short wavelength variations in the VDoHS rates. The resultant solution fits the statistically significant variations in GPS observations while ignoring the noise-dominated short wavelengths. The primary issues affecting the quality of the inversion for discrete GPS data are observational uncertainty and sample spacing.

Keywords

Inversion methodology Theory Implementation VDoHS rate basis functions Localized VDoHS rates Finite elements Boundary conditions Bayesian methodology Maximum entropy principle Solution resolution 

References

  1. Argyris J, Fried I, Scharpf D (1968) The TUBA family of plate elements for the matrix displacement method. Aeronaut J R Aeronaut Soc 72:701–709Google Scholar
  2. Constable S, Parker R, Constable C (1987) Occam’s inversion: a practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics 52:289–300Google Scholar
  3. Fisher R, Ronald A (1922) On the mathematical foundations of theoretical statistics. Philos Trans R Soc Lond 222(594–604):326. doi: 10.1098/rsta.1922.0009 Google Scholar
  4. Hald A (1998) A history of mathematical statistics from 1750 to 1930. Wiley, New YorkGoogle Scholar
  5. Jaynes E (1957a) Information theory and statistical mechanics. Phys Rev 106(4):620–630. doi: 10.1103/PhysRev.106.620 CrossRefGoogle Scholar
  6. Jaynes E (1957b) Information theory and statistical mechanics II. Phys Rev 108(2):171–190. doi: 10.1103/PhysRev.108.171 CrossRefGoogle Scholar
  7. Jaynes E (1963) Information theory and statistical mechanics. In: Ford K (ed) Statistical physics. Benjamin, New YorkGoogle Scholar
  8. Jaynes E (1968) Prior probabilities. IEEE Trans Syst Sci and Cybern 4(3):227–241. doi: 10.1109/TSSC.1968.300117 CrossRefGoogle Scholar
  9. Jaynes E (1988) The relation of Bayesian and maximum entropy methods. In: Maximum-entropy and Bayesian methods in science and engineering, vol 1. Kluwer Academic Publishers, New YorkGoogle Scholar
  10. Jaynes E (2003) Probability theory: the logic of science. Cambridge University Press, CambridgeGoogle Scholar
  11. Kolmogorov A (1956) Foundations of the theory of probability, 2nd edn. Chelsea, New YorkGoogle Scholar
  12. Menke W (1984) Geophysical data analysis: discrete inverse theory. Academic Press, San DiegoGoogle Scholar
  13. Shannon C (1948) A mathematical theory of communication. Bell Syst Tech J 27(3):379–423. doi: 10.1002/j.1538-7305.1948.tb01338.x CrossRefGoogle Scholar
  14. Snieder R, Trampert J (1999) Inverse problems in geophysics. In: Wirgin A (ed) Wavefield inversion. Springer, New YorkGoogle Scholar
  15. Tarantola A (1987) Inverse problem theory. Elsevier, AmsterdamGoogle Scholar
  16. Tarantola A, Valette B (1982) Inverse problems = quest for information. J Geophys 50:159–170Google Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • A. John Haines
    • 1
    Email author
  • Lada L. Dimitrova
    • 2
  • Laura M. Wallace
    • 2
  • Charles A. Williams
    • 3
  1. 1.GNS ScienceDunedinNew Zealand
  2. 2.Institute for GeophysicsUniversity of TexasAustinUSA
  3. 3.GNS ScienceAvalonNew Zealand

Personalised recommendations