Advertisement

Introduction to the Vertical Derivatives of Horizontal Stress (VDoHS) Rates

  • A. John HainesEmail author
  • Lada L. Dimitrova
  • Laura M. Wallace
  • Charles A. Williams
Chapter
  • 403 Downloads
Part of the SpringerBriefs in Earth Sciences book series (BRIEFSEARTH)

Abstract

We explain the structure of the force balance equations at the Earth’s surface for flat Earth and spherical Earth cases. A key assumption is that at the surface of the Earth, where GPS observations are made, the inter-seismic behavior is purely elastic; that is, the rocks are cold and the rheology is much less complicated than at mid- and lower-crustal depths. Whereas at depth velocities are related to total stresses because ductility comes into play, at the surface inter-seismic displacements are related only to incremental stresses and surface velocities are related only to rates of change of stress. A simple consequence is that the horizontal-component manifestations at the surface of any subsurface deformation source, in the form of the vertical derivatives of horizontal stress (VDoHS) rates, can be deduced from surface observations of horizontal velocity using elasticity theory alone.

Keywords

Force balance equations Earth’s surface Flat Earth Spherical Earth Elastic inter-seismic behavior Surface velocities Stress rates Strain rates VDoHS rates Green’s functions 

References

  1. Bower A (2009) Applied mechanics of solids. CRC Press, Boca RatonGoogle Scholar
  2. Dempsey D, Ellis S, Rowland J et al (2012) The role of frictional plasticity in the evolution of normal fault systems. J Struct Geol 39:122–137. doi: 10.1016/j.jsg.2012.03.001 CrossRefGoogle Scholar
  3. England P, McKenzie D (1982) A thin viscous sheet model for continental deformation. Geophys J R Astron Soc 70:295–321. doi: 10.1111/j.1365-246X.1982.tb04969.x CrossRefGoogle Scholar
  4. England P, McKenzie D (1983) Correction to: a thin viscous sheet model for continental deformation. Geophys J R Astron Soc 73:523–532. doi: 10.1111/j.1365/246X.1983.tb03328.x CrossRefGoogle Scholar
  5. Flesch L, Haines J, Holt W (2001) Dynamics of the India-Eurasia collision zone. J Geophys Res. doi: 10.1029/2001JB000208 Google Scholar
  6. Huismans R, Buiter S, Beaumont C (2005) Effect of plastic-viscous layering and strain softening on mode selection during lithospheric extension. J Geophys Res. doi: 10.1029/2004JB003114 Google Scholar
  7. Malvern L (1969) Introduction to the mechanics of a continuous medium. Prentice-Hall, Englewoods CliffsGoogle Scholar
  8. McClay K, Ellis P (1987) Geometries of extensional fault systems developed in model experiments. Geol 15:341–344CrossRefGoogle Scholar
  9. Rudnicki J, Rice J (1975) Conditions for the localization of deformation in pressure-sensitive dilatant materials. J Mech Phy Solids 23:371–394Google Scholar
  10. Turcotte D, Schubert G (2002) Geodynamics. Cambridge University Press, CambridgeCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • A. John Haines
    • 1
    Email author
  • Lada L. Dimitrova
    • 2
  • Laura M. Wallace
    • 2
  • Charles A. Williams
    • 3
  1. 1.GNS ScienceDunedinNew Zealand
  2. 2.Institute for GeophysicsUniversity of TexasAustinUSA
  3. 3.GNS ScienceAvalonNew Zealand

Personalised recommendations