• A. John HainesEmail author
  • Lada L. Dimitrova
  • Laura M. Wallace
  • Charles A. Williams
Part of the SpringerBriefs in Earth Sciences book series (BRIEFSEARTH)


In the last few decades increased GPS monitoring has provided detailed insight into distributed deformation. As the density of GPS stations increases, it becomes even more important to develop advanced analytic methods to use the data to image the deformation of the continental crust and upper mantle and in particular the subsurface deformation sources. Capturing high resolution measurements of crustal deformation and strain rate measurements is fundamental in understanding the underlying mechanisms and dynamics of continental deformation and allows better recognition and assessment of seismic hazards. Vertical derivatives of horizontal stress (VDoHS) rates are the horizontal-component surface manifestation of all subsurface deformation. In this book, we outline how VDoHS rates can be obtained from GPS velocity data without regard to the precise nature and location of the subsurface source or the rheology of the underlying medium, and show examples of how VDoHS rates can be used in practice.


GPS monitoring Distributed deformation Subsurface deformation sources High resolution measurement Strain rate Mechanics and dynamics Seismic hazards Horizontal-component Surface manifestation VDoHs rates 


  1. Beavan J, Haines J (2001) Contemporary horizontal velocity and strain rate fields of the Pacific-Australian plate boundary zone through New Zealand. J Geophys Res 106(B1):741–770. doi: 10.1029/2000JB900302 CrossRefGoogle Scholar
  2. Beavan J, Moore M, Pearson C et al (1999) Crustal deformation during 1994–1998 due to oblique continental collision in the central Southern Alps, New Zealand, and implications for seismic potential of the Alpine Fault. J Geophys Res 104(B11):25233–25255. doi: 10.1029/1999JB900198 CrossRefGoogle Scholar
  3. Bird P (2009) Long-term fault slip rates, distributed deformation rates, and forecast of seismicity in the western United States from joint fitting of community geologic, geodetic, and stress direction data sets. J Geophys Res 114(B11403). doi: 10.1029/2009JB006317
  4. D’Agostino N, Mantenuto S, D’Anastasio E et al (2009) Contemporary crustal extension in the Umbria-Marche Apennines from regional CGPS networks and comparison between geodetic and seismic deformation. Tectonophysics 476:3–12. doi: 10.1016/j.tecto.2008.09.033 CrossRefGoogle Scholar
  5. Freed A, Ali S, Bürgmann R (2007) Evolution of stress in Southern California for the past 200 years from coseismic, postseismic and interseismic stress changes. Geophys J Int 169:1164–1179. doi: 10.1111/j.1365-246X.2007.03391.x CrossRefGoogle Scholar
  6. Haines J (1982) Calculating velocity fields across plate boundaries from observed shear rates. Geophys J R Astron Soc 68:203–209. doi: 10.1111/j.1365-246X.1982.tb06969.x CrossRefGoogle Scholar
  7. Haines J, Holt W (1993) A procedure for obtaining the complete horizontal motions within zones of distributed deformation from the inversion of strain rate data. J Geophys Res 98(B7):12057–12082. doi: 10.1029/93JB00892 CrossRefGoogle Scholar
  8. Hammond W, Blewitt G, Kreemer C (2011) Block modeling of crustal deformation of the northern Walker Lane and Basin and Range from GPS velocities. J Geophys Res 116(B04402). doi: 10.1029/2010JB007817
  9. Holt W, Haines J (1993) Velocity fields in deforming Asia from the inversion of earthquake-released strains. Tectonics 12(1):1–20. doi: 10.1029/92TC00658 CrossRefGoogle Scholar
  10. Hudnut K, Bock Y, Galetzka J et al (2002) The Southern California integrated GPS network (SCIGN). In: Fujinawa Y, Yoshida A (eds) Seismotectonics in convergent plate boundary: 167-189. TERRAPUB, TokyoGoogle Scholar
  11. Keiding M, Árnadóttir T, Sturkell E et al (2008) Strain accumulation along an oblique plate boundary: the Reykjanes Peninsula, southwest Iceland. Geophys J Int 172:861–872. doi: 10.1111/j.1365-246X.2007.03655.x CrossRefGoogle Scholar
  12. Kreemer C, Haines J, Holt W et al (2000) On the determination of a global strain rate model. Earth, Planets Space 52:765–770. doi: 10.1186/BF03352279 CrossRefGoogle Scholar
  13. Kreemer C, Holt W, Haines J (2003) An integrated global model of present-day plate motions and plate boundary deformation. Geophys J Int 154:8–34. doi: 10.1046/j.1365-246X.2003.01917.x CrossRefGoogle Scholar
  14. Kreemer C, Blewitt G, Hammond, W et al (2009) A high-resolution strain rate tensor model for the western U.S.. EarthScope National Meeting, Boise, ID. AbstractGoogle Scholar
  15. Liu Z, Owen S, Dong D et al (2010) Estimation of interpolate coupling in the Nankai trough, Japan using GPS data from 1996 to 2006. Geophys J Int 181:1313–1328. doi: 10.1111/j.1365-246X.2010.04600.x CrossRefGoogle Scholar
  16. McCaffrey R (2005) Block kinematics of the Pacific-North America plate boundary in the southwestern United States from inversion of GPS, seismological and geologic data. J Geophys Res 110(B07401). doi: 10.1029/2004JB003307
  17. McCaffrey R, Long M, Goldfinger C et al (2000) Rotation and plate locking at the southern Cascadia subduction zone. Geophys Res Lett 27:3117–3120. doi: 10.1029/2000.GL011768 CrossRefGoogle Scholar
  18. McCaffrey R, King R, Payne S et al (2013) Active tectonics of northwestern U.S. inferred from GPS-derived surface velocities. J Geophys Res Solid Earth 118:709–723. doi: 10.1029/2012JB009473 CrossRefGoogle Scholar
  19. Meade B, Hager B (2005) Block models of crustal motion in southern California constrained by GPS measurements. J Geophys Res 110(B03403). doi: 10.1029/2004JB003209
  20. Murray J, Langbein J (2006) Slip on the San Andreas Fault at Parkfield, California, over two earthquake cycles and the implications for seismic hazard. Bull Seism Soc Am 96(4B):S283–S303. doi: 10.1785/0120050820 CrossRefGoogle Scholar
  21. Murray J, Segall P, Cervelli P et al (2001) Inversion of GPS data for spatially variable slip-rate on the San Andreas Fault near Parkfield, CA. Geophys Res Lett 28:359–362. doi: 10.1029/2000GL011933 CrossRefGoogle Scholar
  22. Norris R, Cooper A (2007) The Alpine Fault, New Zealand: surface geology and field relationships. In: A continental plate boundary: tectonics at South Island, New Zealand. AGU, WashingtonGoogle Scholar
  23. Okada Y (1985) Surface deformation due to shear and tensile faults in a half-space. Bull Seism Soc Am 75(4):1135–1154Google Scholar
  24. Okada Y (1992) Internal deformation due to shear and tensile faults in a half-space. Bull Seism Soc Am 82(2):1018–1040Google Scholar
  25. Platt J, Klaus B, Becker T (2007) The mechanics of continental transforms: an alternative approach with applications to the San Andreas system and the tectonics of California. Earth Plan Sci Lett 274:380–391. doi: 10.1016/j.epsl.2008.07.052 CrossRefGoogle Scholar
  26. Sagiya T, Miyazaki S, Tada T (2000) Continuous GPS array and present-day crustal deformation of Japan. Pure appl Geophys 157:2303–2322. doi: 10.1007/PL00022507 Google Scholar
  27. SCEC (2011) Report on April 2010 workshop on incorporating Geodetic Surface Deformation Data into UCERF3. SCEC. Accessed 30 May 2015
  28. Smith B, Sandwell D (2003) Coulomb stress accumulation along the San Andreas fault system. J Geophys Res 108(B6):2296. doi: 10.1029/2002JB002136 CrossRefGoogle Scholar
  29. Smith-Konter B, Sandwell, D (2009) Stress evolution of the San Andreas fault system: recurrence interval versus locking depth. Geophys Res Lett 36(L13304). doi: 10.1029/2009GL037235
  30. Smith‐Konter B, Sandwell D, Shearer P (2011) Locking depths estimated from geodesy and seismology along the San Andreas Fault system: implications for seismic moment release. J Geophys Res 116(B06401). doi: 10.1029/2010JB008117
  31. Wallace L, Beavan J, McCaffrey R et al (2004) Subduction zone coupling and tectonic block rotations in the North Island, New Zealand. J Geophys Res 109(B12406). doi: 10.1029/2004JB003241
  32. Wallace L, Barnes P, Beavan J et al (2012) The kinematics of a transition from subduction to strike-slip: an example from the central New Zealand plate boundary. J Geophys Res 117(B02405). doi: 10.1029/2011JB008640
  33. Williams M, Fischer K, Freymueller J, et al (2010) Unlocking the secrets of the North American continent: an EarthScope science plan for 2010-2020. EarthScope. Accessed 30 May 2015

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • A. John Haines
    • 1
    Email author
  • Lada L. Dimitrova
    • 2
  • Laura M. Wallace
    • 2
  • Charles A. Williams
    • 3
  1. 1.GNS ScienceDunedinNew Zealand
  2. 2.Institute for GeophysicsUniversity of TexasAustinUSA
  3. 3.GNS ScienceAvalonNew Zealand

Personalised recommendations