Advertisement

Towards an Operational Quantum Memory

  • Cécile GrèzesEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter concludes the work we have made towards a spin ensemble quantum memory. It gathers a selection of experiments and realizations initiated at the end of this thesis work that illustrate the next steps to reach the operational level.

Keywords

Optical Pulse Coherence Time Microwave Pulse Retrieval Efficiency Hybrid Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J.R. Maze, J.M. Taylor, M.D. Lukin, Electron spin decoherence of single nitrogen-vacancy defects in diamond. Phys. Rev. B 78, 094303 (2008)CrossRefADSGoogle Scholar
  2. 2.
    N. Zhao, S.-W. Ho, R.-B. Liu, Decoherence and dynamical decoupling control of nitrogen vacancy center electron spins in nuclear spin baths. Phys. Rev. B 85, 115303 (2012)CrossRefADSGoogle Scholar
  3. 3.
    P.L. Stanwix, L.M. Pham, J.R. Maze, D. Le Sage, T.K. Yeung, P. Cappellaro, P.R. Hemmer, A. Yacoby, M.D. Lukin, R.L. Walsworth, Coherence of nitrogen-vacancy electronic spin ensembles in diamond. Phys. Rev. B 82, 201201 (2010)CrossRefADSGoogle Scholar
  4. 4.
    G. de Lange, Z.H. Wang, D. RistÚ, V.V. Dobrovitski, R. Hanson, Universal dynamical decoupling of a single solid-state spin from a spin bath. Science 330(6000), 60–63 (2010)CrossRefADSGoogle Scholar
  5. 5.
    A.M. Tyryshkin, S. Tojo, J.L. Morton, H. Riemann, N.V. Abrosimov, P. Becker, H.-J. Pohl, T. Schenkel, M.L.W. Thewalt, K.M. Itoh, S.A. Lyon, Electron spin coherence exceeding seconds in high-purity silicon. Nat. Mater. 11(2), 143–147 (2012)CrossRefADSGoogle Scholar
  6. 6.
    W. Yang, R.-B. Liu, Quantum many-body theory of qubit decoherence in a finite-size spin bath. Phys. Rev. B 78, 085315 (2008)CrossRefADSGoogle Scholar
  7. 7.
    B. Julsgaard, K. Mølmer, Fundamental limitations in spin-ensemble quantum memories for cavity fields. Phys. Rev. A 88, 062324 (2013)CrossRefADSGoogle Scholar
  8. 8.
    E. Kupce, R. Freeman, Stretched adiabatic pulses for broadband spin inversion. J. Magn. Reson. 117, 246–256 (1995)CrossRefADSGoogle Scholar
  9. 9.
    V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chanelière, J.-L. Le Gouët, Revival of silenced echo and quantum memory for light. New J. Phys. 13, 093031 (2011)CrossRefADSGoogle Scholar
  10. 10.
    A.J. Sigillito, H. Malissa, A.M. Tyryshkin, H. Riemann, N.V. Abrosimov, P. Becker, H.-J. Pohl, M.L.W. Thewalt, K.M. Itoh, J.J.L. Morton, A.A. Houck, D.I. Schuster, S.A. Lyon, Fast, low-power manipulation of spin ensembles in superconducting microresonators. Appl. Phys. Lett. 104(22) (2014)Google Scholar
  11. 11.
    D.M. Toyli, C.D. Weis, G.D. Fuchs, T. Schenkel, D. Awschalom, Chip-scale nanofabrication of single spins and spin arrays in diamond. Nano Lett. 10(8), 3168–3172 (2010)CrossRefADSGoogle Scholar
  12. 12.
    A. Palacios-Laloy, F. Nguyen, F. Mallet, P. Bertet, D. Vion, D. Esteve, Tunable resonators for quantum circuits. J. Low Temp. Phys. 151, 1034 (2008)CrossRefADSGoogle Scholar
  13. 13.
    Y. Chen, C. Neill, P. Roushan, N. Leung, M. Fang, R. Barends, J. Kelly, B. Campbell, Z. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, A. Megrant, J.Y. Mutus, P.J.J. O’Malley, C.M. Quintana, D. Sank, A. Vainsencher, J. Wenner, T.C. White, M.R. Geller, A.N. Cleland, J.M. Martinis, Qubit architecture with high coherence and fast tunable coupling. arXiv, pp. 1402–7367 (2014)Google Scholar
  14. 14.
    J. Kerckhoff, R.W. Andrews, H.S. Ku, W.F. Kindel, K. Cicak, R.W. Simmonds, K.W. Lehnert, Tunable coupling to a mechanical oscillator circuit using a coherent feedback network. Phys. Rev. X 3, 021013 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Quantronics GroupCEA SaclayGif-sur-YvetteFrance

Personalised recommendations