Experiment 2 (Read): Multimode Retrieval of Few Photon Fields from a Spin Ensemble

  • Cécile GrèzesEmail author
Part of the Springer Theses book series (Springer Theses)


This chapter is dedicated to the presentation of the second experiment, where we made progress on the implementation of the read step of our memory protocol. Multiple few-photons microwave pulses initially stored in the spin ensemble are retrieved by applying refocusing techniques. An active reset of the spins by optical repumping is also implemented.


Spin Polarization Optical Power Optical Pulse Coherence Time Microwave Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    H. Wu, R.E. George, J.H. Wesenberg, K. Mølmer, D.I. Schuster, R.J. Schoelkopf, K.M. Itoh, A. Ardavan, J.J.L. Morton, G.A.D. Briggs, Storage of multiple coherent microwave excitations in an electron spin ensemble. Phys. Rev. Lett. 105, 140503 (2010)CrossRefADSGoogle Scholar
  2. 2.
    J. Morton. Private communicationGoogle Scholar
  3. 3.
    R. Hanson. Private communicationGoogle Scholar
  4. 4.
    E.R.I. Abraham, E.A. Cornell, Teflon feedthrough for coupling optical fibers into ultrahigh vacuum systems. Appl. Opt. 37, 1762–1763 (1998)CrossRefADSGoogle Scholar
  5. 5.
    A. Jarmola, V.M. Acosta, K. Jensen, S. Chemerisov, D. Budker, Temperature and magnetic field dependent longitudinal spin relaxation in nitrogen-vacancy ensembles in diamond. Phys. Rev. Lett. 108, 197601 (2012)CrossRefADSGoogle Scholar
  6. 6.
    C. Grezes, B. Julsgaard, Y. Kubo, M. Stern, T. Umeda, J. Isoya, H. Sumiya, S. Abe, S. Onoda, T. Ohshima, V. Jacques, J. Esteve, D. Vion, D. Esteve, K. Moelmer, P. Bertet, Multimode storage and retrieval of microwave fields in a spin ensemble. Phys. Rev. X 4, 021049 (2014)Google Scholar
  7. 7.
    H. Engstrom, Infrared reflectivity and transmissivity of boron-implanted, laser-annealed silicon. J. Appl. Phys. 51, 5245 (1980)CrossRefADSGoogle Scholar
  8. 8.
    L. Robledo, L. Childress, H. Bernien, B. Hensen, P.F.A. Alkemade, R. Hanson, High-fidelity projective read-out of a solid-state spin quantum register. Nature 477, 574 (2011)CrossRefADSGoogle Scholar
  9. 9.
    V. Ranjan, G. de Lange, R. Schutjens, T. Debelhoir, J.P. Groen, D. Szombati, D.J. Thoen, T.M. Klapwijk, R. Hanson, L. DiCarlo, Probing dynamics of an electron-spin ensemble via a superconducting resonator. Phys. Rev. Lett. 110, 067004 (2013)CrossRefADSGoogle Scholar
  10. 10.
    H. Malissa, D.I. Schuster, A.M. Tyryshkin, A.A. Houck, S.A. Lyon, Superconducting coplanar waveguide resonators for low temperature pulsed electron spin resonance spectroscopy. Rev. Sci. Instrum. 84, 025116 (2013)CrossRefADSGoogle Scholar
  11. 11.
    R. Hanson, O. Gywat, D.D. Awschalom, Room-temperature manipulation and decoherence of a single spin in diamond. Phys. Rev. B 74, 161203 (2006)CrossRefADSGoogle Scholar
  12. 12.
    G. Wolfowicz, A.M. Tyryshkin, R.E. George, H. Riemann, N.V. Abrosimov, P. Becker, H. Pohl, M. Thewalt, S.A. Lyon, J. Morton, Atomic clock transitions in silicon-based spin qubits. Nat. Nanotechnol. 8(6), 561–564 (2013)CrossRefADSGoogle Scholar
  13. 13.
    F. Dolde, H. Fedder, M.W. Doherty, T. Nöbauer, F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, L.C.L. Hollenberg, F. Jelezko, Electric-field sensing using single diamond spins. Nat. Phys. 7(6), 459–463 (2011)CrossRefGoogle Scholar
  14. 14.
    Z. Wang, G. de Lange, D. Ristè, R. Hanson, V.V. Dobrovitski, Comparison of dynamical decoupling protocols for a nitrogen-vacancy center in diamond. Phys. Rev. B 85, 155204 (2012)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Quantronics GroupCEA SaclayGif-sur-YvetteFrance

Personalised recommendations