Advertisement

Proposal: A Spin Ensemble Quantum Memory for Superconducting Qubits

  • Cécile GrèzesEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter is dedicated to the presentation of the quantum memory protocol, on which our experiments are based. It describes the storage in parallel of multiple quantum states into a spin ensemble, and their on-demand retrieval. Simulations of this protocol performed by B. Julsgaard are presented at the end of this chapter with realistic experimental parameters.

Keywords

Quantum State Larmor Frequency Strong Coupling Regime Quantum Memory Dark Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. Dewes, R. Lauro, F.R. Ong, V. Schmitt, P. Milman, P. Bertet, D. Vion, D. Esteve, Quantum speeding-up of computation demonstrated in a superconducting two-qubit processor. Phys. Rev. B 85, 140503 (2012)CrossRefADSGoogle Scholar
  2. 2.
    M. Neeley, R.C. Bialczak, M. Lenander, E. Lucero, M. Mariantoni, A.D. O’Connell, D. Sank, H. Wang, M. Weides, J. Wenner, Y. Yin, T. Yamamoto, A.N. Cleland, J.M. Martinis, Generation of three-qubit entangled states using superconducting phase qubits. Nature 467, 570–573 (2010)CrossRefADSGoogle Scholar
  3. 3.
    L. DiCarlo, M.D. Reed, L. Sun, B.R. Johnson, J.M. Chow, J.M. Gambetta, L. Frunzio, S.M. Girvin, M.H. Devoret, R.J. Schoelkopf, Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature 467, 574–578 (2010)CrossRefADSGoogle Scholar
  4. 4.
    R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T.C. White, J. Mutus, A.G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O’Malley, P. Roushan, A. Vainsencher, J. Wenner, A.N. Korotkov, A.N. Cleland, J.M. Martinis, Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508, 500–503 (2014)CrossRefADSGoogle Scholar
  5. 5.
    L. DiCarlo, J.M. Chow, J.M. Gambetta, L.S. Bishop, B.R. Johnson, D.I. Schuster, J. Majer, A. Blais, L. Frunzio, S.M. Girvin, R.J. Schoelkopf, Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 460, 240–244 (2009)CrossRefADSGoogle Scholar
  6. 6.
    M. Mariantoni, H. Wang, T. Yamamoto, M. Neeley, R.C. Bialczak, Y. Chen, M. Lenander, E. Lucero, A.D. O’Connell, D. Sank, M. Weides, J. Wenner, Y. Yin, J. Zhao, A.N. Korotkov, A.N. Cleland, J.M. Martinis, Implementing the quantum von Neumann architecture with superconducting circuits. Science 334, 61–65 (2011)CrossRefADSGoogle Scholar
  7. 7.
    E. Lucero, R. Barends, Y. Chen, J. Kelly, M. Mariantoni, A. Megrant, P. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. White, Y. Yin, A.N. Cleland, J.M. Martinis, Computing prime factors with a Josephson phase qubit quantum processor. Nat. Phys. 8, 719–723 (2012)CrossRefGoogle Scholar
  8. 8.
    R. Barends, J. Kelly, A. Megrant, D. Sank, E. Jeffrey, Y. Chen, Y. Yin, B. Chiaro, J. Mutus, C. Neill, P. O’Malley, P. Roushan, J. Wenner, T.C. White, A.N. Cleland, J.M. Martinis, Coherent Josephson qubit suitable for scalable quantum integrated circuits. Phys. Rev. Lett. 111, 080502 (2013)CrossRefADSGoogle Scholar
  9. 9.
    H. Paik, D.I. Schuster, L.S. Bishop, G. Kirchmair, G. Catelani, A.P. Sears, B.R. Johnson, M.J. Reagor, L. Frunzio, L.I. Glazman, S.M. Girvin, M.H. Devoret, R.J. Schoelkopf, Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. Phys. Rev. Lett. 107, 240501 (2011)CrossRefADSGoogle Scholar
  10. 10.
    K. Tordrup, A. Negretti, K. Mølmer. Holographic quantum computing. Phys. Rev. Lett. 101, 040501 (2013)Google Scholar
  11. 11.
    A.I. Lvovsky, B.C. Sanders, W. Tittel, Optical quantum memory. Nat. Photonics 3, 706–714 (2009)CrossRefADSGoogle Scholar
  12. 12.
    T. Chaneliere, D.N. Matsukevich, S.D. Jenkins, S.-Y. Lan, T. Kennedy, A. Kuzmich, Storage and retrieval of single photons transmitted between remote quantum memories. Nature 438(7069), 833–836 (2005)CrossRefADSGoogle Scholar
  13. 13.
    M.D. Eisaman, A. André, F. Massou, M. Fleischhauer, A.S. Zibrov, M.D. Lukin, Electromagnetically induced transparency with tunable single-photon pulses. Nature 438(7069), 837–841 (2005)CrossRefADSGoogle Scholar
  14. 14.
    K.S. Choi, H. Deng, J. Laurat, H.J. Kimble, Mapping photonic entanglement into and out of a quantum memory. Nature 452(7183), 67–71 (2008)CrossRefADSGoogle Scholar
  15. 15.
    J. Laurat, K.S. Choi, H. Deng, C.W. Chou, H.J. Kimble, Heralded entanglement between atomic ensembles: preparation, decoherence, and scaling. Phys. Rev. Lett. 99, 180504 (2007)CrossRefADSGoogle Scholar
  16. 16.
    A.L. Alexander, J.J. Longdell, M.J. Sellars, N.B. Manson, Photon echoes produced by switching electric fields. Phys. Rev. Lett. 96, 043602 (2006)CrossRefADSGoogle Scholar
  17. 17.
    M.P. Hedges, J. Longdell, Y. Li, M.J. Sellars, Efficient quantum memory for light. Nature 465(7301), 1052–1056 (2010)CrossRefADSGoogle Scholar
  18. 18.
    M. Afzelius, C. Simon, H. de Riedmatten, N. Gisin, Multimode quantum memory based on atomic frequency combs. Phys. Rev. A 79, 052329 (2009)CrossRefADSGoogle Scholar
  19. 19.
    M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Miná ř, H. de Riedmatten, N. Gisin, S. Kröll, Demonstration of atomic frequency comb memory for light with spin-wave storage. Phys. Rev. Lett. 104, 040503 (2010)CrossRefADSGoogle Scholar
  20. 20.
    E.L. Hahn, Spin echoes. Phys. Rev. 80, 580–594 (1950)CrossRefADSzbMATHGoogle Scholar
  21. 21.
    H. Wu, R.E. George, J.H. Wesenberg, K. Mølmer, D.I. Schuster, R.J. Schoelkopf, K.M. Itoh, A. Ardavan, J.J.L. Morton, G.A.D. Briggs, Storage of multiple coherent microwave excitations in an electron spin ensemble. Phys. Rev. Lett. 105, 140503 (2010)CrossRefADSGoogle Scholar
  22. 22.
    J. Ruggiero, J.-L. Le Gouët, C. Simon, T. Chanelière, Why the two-pulse photon echo is not a good quantum memory protocol. Phys. Rev. A 79, 053851 (2009)CrossRefADSGoogle Scholar
  23. 23.
    V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chanelière, J.-L. Le Gouët, Revival of silenced echo and quantum memory for light. New J. Phys. 13, 093031 (2011)CrossRefADSGoogle Scholar
  24. 24.
    J. Dajczgewand, J.-L. Le Gouët, A. Louchet-Chauvet, T. Chanelière, Large efficiency at telecom wavelength for optical quantum memories. Opt. Lett. 39(9), 2711–2714 (2014)CrossRefADSGoogle Scholar
  25. 25.
    D.L. McAuslan, P.M. Ledingham, W.R. Naylor, S.E. Beavan, M.P. Hedges, M.J. Sellars, J.J. Longdell, Photon-echo quantum memories in inhomogeneously broadened two-level atoms. Phys. Rev. A 84, 022309 (2011)CrossRefADSGoogle Scholar
  26. 26.
    M. Afzelius, N. Sangouard, G. Johansson, M.U. Staudt, C.M. Wilson, Proposal for a coherent quantum memory for propagating microwave photons. New J. Phys. 15(6), 065008 (2013)MathSciNetCrossRefADSGoogle Scholar
  27. 27.
    B. Julsgaard, C. Grezes, P. Bertet, K. Mølmer. Quantum memory for microwave photons in an inhomogeneously broadened spin ensemble. Phys. Rev. Lett. 110, 250503 (2013)Google Scholar
  28. 28.
    M.S. Silver, R.I. Joseph, D.I. Hoult, Selective spin inversion in nuclear magnetic resonance and coherent optics through an exact solution of the Bloch-Riccati equation. Phys. Rev. A 31, R2753 (1985)CrossRefADSGoogle Scholar
  29. 29.
    H. Wang, M. Hofheinz, M. Ansmann, R.C. Bialczak, E. Lucero, M. Neeley, A.D. O’Connell, D. Sank, M. Weides, J. Wenner, A.N. Cleland, J.M. Martinis, Decoherence dynamics of complex photon states in a superconducting circuit. Phys. Rev. Lett. 103, 200404 (2009)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Quantronics GroupCEA SaclayGif-sur-YvetteFrance

Personalised recommendations