Abstract
We investigate the problem of exchanging probabilistic data between ontology-based probabilistic databases. The probabilities of the probabilistic source databases are compactly and flexibly encoded via Bayesian networks, which are closely related to the management of provenance. For the ontologies and the ontology mappings, we consider existential rules from the Datalog+/– family. We analyze the computational complexity of the problem of deciding whether there exists a probabilistic (universal) solution for a given probabilistic source database relative to a (probabilistic) ontological data exchange problem. We provide a host of complexity results for this problem for different classes of existential rules. We also analyze the complexity of answering UCQs (unions of conjunctive queries) in this framework.
Keywords
- Bayesian Network
- Description Logic
- Conjunctive Query
- Source Database
- Query Answering
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Arenas, M., Botoeva, E., Calvanese, D., Ryzhikov, V.: Exchanging OWL2 QL knowledge bases. In: Proc. IJCAI, pp. 703–710 (2013)
Arenas, M., Botoeva, E., Calvanese, D., Ryzhikov, V., Sherkhonov, E.: Exchanging description logic knowledge bases. In: Proc. KR, pp. 563–567 (2012)
Arenas, M., Pérez, J., Reutter, J.L.: Data exchange beyond complete data. J. ACM 60(4), 28:1–28:59 (2013)
Baader, F.: Least common subsumers and most specific concepts in a description logic with existential restrictions and terminological cycles. In: Proc. IJCAI, pp. 364–369 (2003)
Baader, F., Brandt, S., Lutz, C.: Pushing the \(\cal EL\) envelope. In: Proc. IJCAI, pp. 364–369 (2005)
Calì, A., Gottlob, G., Kifer, M.: Taming the infinite chase: Query answering under expressive relational constraints. J. Artif. Intell. Res. 48, 115–174 (2013)
Cali, A., Gottlob, G., Lukasiewicz, T., Marnette, B., Pieris, A.: Datalog+/-: a family of logical knowledge representation and query languages for new applications. In: Proc. LICS, pp. 228–242 (2010)
Calì, A., Gottlob, G., Pieris, A.: Towards more expressive ontology languages: The query answering problem. Artif. Intell. 193, 87–128 (2012)
Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: The DL-Lite family. J. Autom. Reasoning 39(3), 385–429 (2007)
Cooper, G.F.: The computational complexity of probabilistic inference using Bayesian belief networks. Artif. Intell. 42(2–3) (1990)
Fagin, R., Kimelfeld, B., Kolaitis, P.G.: Probabilistic data exchange. J. ACM 58(4), 15:1–15:55 (2011)
Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: Semantics and query answering. Theor. Comput. Sci. 336(1), 89–124 (2005)
Fuhr, N., Rölleke, T.: A probabilistic relational algebra for the integration of information retrieval and database systems. ACM Trans. Inf. Sys. 15(1), 32–66 (1997)
Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: Proc. PODS, pp. 31–40 (2007)
Imielinski, T.: Witold Lipski, J.: Incomplete information in relational databases. J. ACM 31(4), 761–791 (1984)
Johnson, D.S.: A catalog of complexity classes. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. A, chap. 2, pp. 67–161. MIT Press (1990)
Krisnadhi, A., Lutz, C.: Data complexity in the \(\cal EL\) family of description logics. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 333–347. Springer, Heidelberg (2007)
Lenzerini, M.: Data integration: a theoretical perspective. In: Proc. PODS, pp. 233–246 (2002)
Lukasiewicz, T., Martinez, M.V., Pieris, A., Simari, G.I.: From classical to consistent query answering under existential rules. In: Proc. AAAI, pp. 1546–1552 (2015)
Meliou, A., Gatterbauer, W., Suciu, D.: Bringing provenance to its full potential using causal reasoning. In: Proc. TAPP (2011)
Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)
Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking data to ontologies. J. Data Sem. 10, 133–173 (2008)
Roth, D.: On the hardness of approximate reasoning. Artif. Intell. 82, 273–302 (1996)
Suciu, D., Olteanu, D., Ré, C., Koch, C.: Probabilistic Databases. M & C (2011)
Vardi, M.Y.: The complexity of relational query languages (extended abstract). In: Proc. STOC, pp. 137–146 (1982)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Lukasiewicz, T., Martinez, M.V., Predoiu, L., Simari, G.I. (2015). Existential Rules and Bayesian Networks for Probabilistic Ontological Data Exchange. In: Bassiliades, N., Gottlob, G., Sadri, F., Paschke, A., Roman, D. (eds) Rule Technologies: Foundations, Tools, and Applications. RuleML 2015. Lecture Notes in Computer Science(), vol 9202. Springer, Cham. https://doi.org/10.1007/978-3-319-21542-6_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-21542-6_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-21541-9
Online ISBN: 978-3-319-21542-6
eBook Packages: Computer ScienceComputer Science (R0)