Skip to main content

Similarity-Based Strict Equality in a Fully Integrated Fuzzy Logic Language

Part of the Lecture Notes in Computer Science book series (LNPSE,volume 9202)

Abstract

The extension of a given similarity relation \(\mathcal R\) between pairs of symbols of a particular alphabet to terms built with such symbols can be implemented at a very high abstract level by a set of fuzzy program rules defining a predicate called sse. This predicate is defined for incorporating “Similarity-based Strict Equality” into the new fuzzy logic language FASILL (acronym of “Fuzzy Aggregators and Similarity Into a Logic Language”) that we have recently developed in our research group. FASILL aims to cope with implicit/explicit truth degree annotations, a great variety of connectives and unification by similarity. In this paper we show the benefits of using this sophisticated notion of equality which is somehow inspired by the so-called “Strict Equality” of functional and functional-logic languages with lazy semantics (e.g.: Haskell and Curry respectively) and the “Similarity-based Equality” of fuzzy logic languages using weak unification (Bousi \(\sim \) Prolog, Likelog), a notion beyond classic syntactic unification.

Keywords

  • Fuzzy logic programming
  • Similarity relations
  • Equality

Work Supported by the EU (FEDER), and the Spanish MINECO Ministry (Ministerio de Economía y Competitividad) under grant TIN2013-45732-C4-2-P.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arcelli, F.: Likelog for flexible query answering. Soft Computing 7(2), 107–114 (2002)

    CrossRef  MATH  Google Scholar 

  2. Caballero, R., Rodríguez-Artalejo, M., Romero-Díaz, C.A.: A transformation-based implementation for clp with qualification and proximity. Theory and Practice of Logic Programming 14(1), 1–63 (2014)

    CrossRef  MathSciNet  Google Scholar 

  3. Formato, F., Gerla, G., Sess, M.I.: Similarity-based unification. Fundamenta Informaticae 41(4), 393–414 (2000)

    MathSciNet  MATH  Google Scholar 

  4. Hall, C.V., Hammond, K., Partain, W., Peyton Jones, S.L., Wadler, P.: The glasgow haskell compiler: a retrospective. In: Launchbury, J., Sansom, P.M. (Eds.) Functional Programming, Workshops in Computing, pp. 62–71. Springer (1992)

    Google Scholar 

  5. Hanus, M. (ed.): Curry: An Integrated Functional Logic Language (2003). http://www.informatik.uni-kiedl.de/~mh/curry/

  6. Julián Iranzo, P., Moreno, G., Penabad, J., Vázquez, C.: A fuzzy logic programming environment for managing similarity and truth degrees. In: Escobar, S. (Eds.) Proc. of XIV Jornadas Sobre Programación y Lenguajes, PROLE 2015, vol. 173, pp. 71–86. EPTCS, Cádiz (2015)

    Google Scholar 

  7. Julián, P., Moreno, G., Penabad, J.: On the declarative semantics of multi-adjoint logic programs. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds.) IWANN 2009, Part I. LNCS, vol. 5517, pp. 253–260. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  8. Julián-Iranzo, P., Moreno, G., Penabad, J., Vázquez, C.: A declarative semantics for a fuzzy logic language managing similarities and truth degrees. In: Submitted to the 13th Int. Work-Conference on Artificial Neural Networks, IWANN 2015 (2015)

    Google Scholar 

  9. Julián-Iranzo, P., Rubio-Manzano, C.: A declarative semantics for Bousi\(\sim \)Prolog. In: Proc. of 11th Int. ACM SIGPLAN Conf. on Principles and Practice of Declarative Programming, PPDP 2009, Coimbra, Portugal, pp. 149–160. ACM (2009)

    Google Scholar 

  10. Julián-Iranzo, P., Rubio-Manzano, C.: An efficient fuzzy unification method and its implementation into the Bousi\(\sim \)Prolog system. In: Proc. of the 2010 IEEE Int. Conference on Fuzzy Systems, pp. 1–8 (2010)

    Google Scholar 

  11. Kifer, M., Subrahmanian, V.S.: Theory of generalized annotated logic programming and its applications. Journal of Logic Programming 12, 335–367 (1992)

    CrossRef  MathSciNet  Google Scholar 

  12. Lloyd, J.W.: Foundations of Logic Programming. Springer-Verlag, Heidelberg (1987)

    CrossRef  MATH  Google Scholar 

  13. Medina, J., Ojeda-Aciego, M., Vojtáš, P.: Similarity-based Unification: a multi-adjoint approach. Fuzzy Sets and Systems 146, 43–62 (2004)

    CrossRef  MathSciNet  MATH  Google Scholar 

  14. Morcillo, P.J., Moreno, G., Penabad, J., Vázquez, C.: A practical management of fuzzy truth-degrees using FLOPER. In: Dean, M., Hall, J., Rotolo, A., Tabet, S. (eds.) RuleML 2010. LNCS, vol. 6403, pp. 20–34. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  15. Morcillo, P.J., Moreno, G.: Programming with fuzzy logic rules by using the FLOPER tool. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML 2008. LNCS, vol. 5321, pp. 119–126. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  16. Morcillo, P.-J., Moreno, G., Penabad, J., Vázquez, C.: Declarative traces into fuzzy computed answers. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML 2011 - Europe. LNCS, vol. 6826, pp. 170–185. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  17. Moreno, G.: Similarity-based equality with lazy evaluation. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. CCIS, vol. 80, pp. 108–117. Springer, Heidelberg (2010)

    Google Scholar 

  18. Moreno, G., Vázquez, C.: Fuzzy logic programming in action with floper. Journal of Software Engineering and Applications 7, 237–298 (2014)

    CrossRef  MATH  Google Scholar 

  19. Moreno, G., Penabad, J., Vázquez, C.: Fuzzy logic rules modeling similarity-based strict equality. In: Proc. of the 2014 Federated Conference on Computer Science and Information Systems, Warsaw, Poland, September 7–10, pp. 119–128 (2014)

    Google Scholar 

  20. Muñoz-Hernández, S., Ceruelo, V.P., Strass, H.: Rfuzzy: Syntax, semantics and implementation details of a simple and expressive fuzzy tool over prolog. Information Sciences 181(10), 1951–1970 (2011)

    CrossRef  MathSciNet  Google Scholar 

  21. Nguyen, H.T., Walker, E.A.: A First Course in Fuzzy Logic. Chapman & Hall/CRC, Boca Ratón (2000)

    MATH  Google Scholar 

  22. Rubio-Manzano, C., Julián-Iranzo, P.: A fuzzy linguistic prolog and its applications. Journal of Intelligent and Fuzzy Systems 26(3), 1503–1516 (2014)

    Google Scholar 

  23. Sessa, M.I.: Approximate reasoning by similarity-based sld resolution. Theoretical Computer Science 275(1–2), 389–426 (2002)

    CrossRef  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascual Julián-Iranzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Julián-Iranzo, P., Moreno, G., Vázquez, C. (2015). Similarity-Based Strict Equality in a Fully Integrated Fuzzy Logic Language. In: Bassiliades, N., Gottlob, G., Sadri, F., Paschke, A., Roman, D. (eds) Rule Technologies: Foundations, Tools, and Applications. RuleML 2015. Lecture Notes in Computer Science(), vol 9202. Springer, Cham. https://doi.org/10.1007/978-3-319-21542-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21542-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21541-9

  • Online ISBN: 978-3-319-21542-6

  • eBook Packages: Computer ScienceComputer Science (R0)