Advertisement

Early Experience and Auditory Development in Songbirds

Chapter
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 64)

Abstract

Vocal communication is critical for life in a wide range of vertebrate species. Mammals, birds, frogs, and fishes rely on auditory processing to perceive the vocal signals of others in the environment and gain social information such as the presence of potential mates or predators. Conspecific vocalizations convey information on sex, age, individual identity, and behavioral state. The importance of vocal communication for social behavior places auditory processing at the forefront of brain functions that directly impact fitness. Young humans and songbirds require experience of adult vocal communication to develop their own perceptual and vocal skills. Studies on songbird vocal development and auditory processing are revealing how early experience and developmental plasticity interact to specialize central auditory function for vocal communication. This chapter reviews research findings that shed light on the role of early song experience in shaping adult song perception and the auditory coding of songs.

Keywords

Auditory cortex Communication Learning Midbrain Neural coding Perception Plasticity Sensorimotor integration Sensory Social behavior Vocal 

Notes

Acknowledgments

The author thanks Edwin W Rubel for his scientific findings, ideas, and mentorship that contributed to this work. The author’s work was supported by NIH grant R01-DC-009810.

Compliance with Ethics Requirements

Sarah M. N. Woolley declares that she has no conflict of interest.

References

  1. Amin, N., Doupe, A., & Theunissen, F. E. (2007). Development of selectivity for natural sounds in the songbird auditory forebrain. Journal of Neurophysiology, 97(5), 3517–3531.CrossRefPubMedGoogle Scholar
  2. Atencio, C. A., & Schreiner, C. E. (2008). Spectrotemporal processing differences between auditory cortical fast-spiking and regular-spiking neurons. The Journal of Neuroscience, 28(15), 3897–3910.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Atencio, C. A., & Schreiner, C. E. (2010). Laminar diversity of dynamic sound processing in cat primary auditory cortex. Journal of Neurophysiology, 103(1), 192–205.CrossRefPubMedGoogle Scholar
  4. Beecher, M. D., & Brenowitz, E. A. (2005). Functional aspects of song learning in songbirds. Trends in Ecology & Evolution, 20(3), 143–149.CrossRefGoogle Scholar
  5. Bennur, S., Tsunada, J., Cohen, Y. E., & Liu, R. C. (2013). Understanding the neurophysiological basis of auditory abilities for social communication: A perspective on the value of ethological paradigms. Hearing Research, 305, 3–9.CrossRefPubMedGoogle Scholar
  6. Bolhuis, J. J., Zijlstra, G. G., den Boer-Visser, A. M., & Van Der Zee, E. A. (2000). Localized neuronal activation in the zebra finch brain is related to the strength of song learning. Proceedings of the National Academy of Sciences of the USA, 97(5), 2282–2285.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bolhuis, J. J., Hetebrij, E., Den Boer-Visser, A. M., De Groot, J. H., & Zijlstra, G. G. (2001). Localized immediate early gene expression related to the strength of song learning in socially reared zebra finches. European Journal of Neuroscience, 13(11), 2165–2170.CrossRefPubMedGoogle Scholar
  8. Braaten, R. F., & Reynolds, K. (1999). Auditory preference for conspecific song in isolation-reared zebra finches. Animal Behaviour, 58(1), 105–111.CrossRefPubMedGoogle Scholar
  9. Braaten, R. F., Petzoldt, M., & Colbath, A. (2006). Song perception during the sensitive period of song learning in zebra finches (Taeniopygia guttata). Journal of Comparative Psychology, 120(2), 79–88.CrossRefPubMedGoogle Scholar
  10. Brenowitz, E. A., & Beecher, M. D. (2005). Song learning in birds: Diversity and plasticity, opportunities and challenges. Trends in Neuroscience, 28(3), 127–132.CrossRefGoogle Scholar
  11. Butler, A. B., Reiner, A., & Karten, H. J. (2011). Evolution of the amniote pallium and the origins of mammalian neocortex. Annals of the New York Academy of Sciences, 1225, 14–27.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Calabrese, A., & Woolley, S. M. (2015). Coding principles of the canonical cortical microcircuit in the avian brain. Proceedings of the National Academy of Sciences of the USA, 112(11), 3517–3522.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Catchpole, C. K., & Slater, P. J. B. (2008). Bird song: Biological themes and variations, 2nd ed. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  14. Cate, C. T., & Mug, G. (1984). The development of mate choice in zebra finch females. Behaviour, 90(1–3), 125–150.CrossRefGoogle Scholar
  15. Clayton, N. S. (1988). Song learning and mate choice in estrildid finches raised by 2 species. Animal Behaviour, 36, 1589–1600.CrossRefGoogle Scholar
  16. Cousillas, H., Richard, J. P., Mathelier, M., Henry, L., et al. (2004). Experience-dependent neuronal specialization and functional organization in the central auditory area of a songbird. European Journal of Neuroscience, 19(12), 3343–3352.CrossRefPubMedGoogle Scholar
  17. Cousillas, H., George, I., Mathelier, M., Richard, J. P., et al. (2006). Social experience influences the development of a central auditory area. Naturwissenschaften, 93(12), 588–596.CrossRefPubMedGoogle Scholar
  18. Cousillas, H., George, I., Henry, L., Richard, J. P., & Hausberger, M. (2008). Linking social and vocal brains: Could social segregation prevent a proper development of a central auditory area in a female songbird? PLoS ONE, 3(5), e2194.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dooling, R. J. (1982). Ontogeny of song recognition in birds. American Zoologist, 22, 571–580.CrossRefGoogle Scholar
  20. Doupe, A. J., & Kuhl, P. K. (1999). Birdsong and human speech: Common themes and mechanisms. Annual Review of Neuroscience, 22, 567–631.CrossRefPubMedGoogle Scholar
  21. Dugas-Ford, J., Rowell, J. J., & Ragsdale, C. W. (2012). Cell-type homologies and the origins of the neocortex. Proceedings of the National Academy of Sciences of the USA, 109(42), 16974–16979.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Eales, L. A. (1985). Song learning in zebra finches: Some effects of song model availability on what is learnt and when. Animal Behaviour, 33, 1293–1300.CrossRefGoogle Scholar
  23. Fortune, E. S., & Margoliash, D. (1992). Cytoarchitectonic organization and morphology of cells of the field-L complex in male zebra finches (Taenopygia guttata). The Journal of Comparative Neurology, 325(3), 388–404.CrossRefPubMedGoogle Scholar
  24. George, I., Cousillas, H., Vernier, B., Richard, J. P., et al. (2004). Sound processing in the auditory-cortex homologue of songbirds: Functional organization and developmental issues. Journal of Physiology Paris, 98(4–6), 385–394.CrossRefGoogle Scholar
  25. George, I., Alcaix, S., Henry, L., Richard, J. P., et al. (2010). Neural correlates of experience-induced deficits in learned vocal communication. PLoS ONE, 5(12), e14347.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gleich, O., & Langemann, U. (2011). Auditory capabilities of birds in relation to the structural diversity of the basilar papilla. Hearing Research, 273(1–2), 80–88.CrossRefPubMedGoogle Scholar
  27. Gobes, S. M., & Bolhuis, J. J. (2007). Birdsong memory: A neural dissociation between song recognition and production. Current Biology, 17(9), 789–793.CrossRefPubMedGoogle Scholar
  28. Gobes, S. M., Zandbergen, M. A., & Bolhuis, J. J. (2010). Memory in the making: Localized brain activation related to song learning in young songbirds. Proceedings Biological Sciences, 277(1698), 3343–3351.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Harris, K. D., & Mrsic-Flogel, T. D. (2013). Cortical connectivity and sensory coding. Nature, 503(7474), 51–58.CrossRefPubMedGoogle Scholar
  30. Hauber, M. E., Cassey, P., Woolley, S. M., & Theunissen, F. E. (2007a). Neurophysiological response selectivity for conspecific songs over synthetic sounds in the auditory forebrain of non-singing female songbirds. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 193(7), 765–774.CrossRefPubMedGoogle Scholar
  31. Hauber, M. E., Woolley, S. M., & Theunissen, F. E. (2007b). Experience-dependence of neural responses to social vs. isolate conspecific songs in the forebrain of female zebra finches. Journal of Ornithology, 148.2, 231239.CrossRefGoogle Scholar
  32. Hauber, M. E., Campbell, D. L. M., & Woolley, S. M. (2010). Functional role and female perception of male song in zebra finches. Emu – Austral Ornithology, 110, 209–218.Google Scholar
  33. Heffner, H. E., & Heffner, R. S. (2008). Audition. In S. F. Davis (Ed.), Handbook of research methods in experimental psychology (pp. 413–440). Hoboken, NJ: Wiley-Blackwell.Google Scholar
  34. Heffner, H. E., & Heffner, R. S. (2007). Hearing ranges of laboratory animals. Journal of the American Association of Laboratory Animal Science, 46(1), 20–22.Google Scholar
  35. Immelmann, K. (1969). Song development in the zebra finch and other estrildid finches. In R. A. Hinde (Ed.), Bird vocalizations (pp. 61–77). Cambridge: Cambridge University Press.Google Scholar
  36. Jin, H., & Clayton, D. F. (1997). Localized changes in immediate-early gene regulation during sensory and motor learning in zebra finches. Neuron, 19(5), 1049–1059.CrossRefPubMedGoogle Scholar
  37. Karten, H. J. (2013). Neocortical evolution: Neuronal circuits arise independently of lamination. Current Biology, 23(1), R12–15.CrossRefPubMedGoogle Scholar
  38. Konishi, M. (1964). Effects of deafening on song development in two species of juncos. Condor, 66, 85–102.CrossRefGoogle Scholar
  39. Konishi, M. (2004). The role of auditory feedback in birdsong. Annals of the New York Academy of Sciences, 1016, 463–475.CrossRefPubMedGoogle Scholar
  40. Köppl, C. (2011). Birds—same thing, but different? Convergent evolution in the avian and mammalian auditory systems provides informative comparative models. Hearing Research, 273(1–2), 65–71.CrossRefPubMedGoogle Scholar
  41. Kuhl, P. K. (2007). Is speech learning ‘gated’ by the social brain? Developmental Science, 10(1), 110–120.CrossRefPubMedGoogle Scholar
  42. Kuhl, P. K. (2010). Brain mechanisms in early language acquisition. Neuron, 67(5), 713–727.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Lauay, C., Gerlach, N. M., Adkins-Regan, E., & Devoogd, T. J. (2004). Female zebra finches require early song exposure to prefer high-quality song as adults. Animal Behaviour, 68(6), 1249–1255.CrossRefGoogle Scholar
  44. London, S. E., & Clayton, D. F. (2008). Functional identification of sensory mechanisms required for developmental song learning. Nature Neuroscience, 11(5), 579–586.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Marler, P. (2004). Innateness and the instinct to learn. Anais da Academia Brasileira de Ciências, 76(2), 189–200.CrossRefPubMedGoogle Scholar
  46. Marler, P., & Waser, M. S. (1977). Role of auditory feedback in canary song development. Journal of Comparative and Physiology Psychology, 91(1), 8–16.CrossRefGoogle Scholar
  47. Maul, K. K., Voss, H. U., Parra, L. C., Salgado-Commissariat, D., et al. (2010). The development of stimulus-specific auditory responses requires song exposure in male but not female zebra finches. Developmental Neurobiology, 70(1), 28–40.PubMedPubMedCentralGoogle Scholar
  48. Meliza, C. D., & Margoliash, D. (2012). Emergence of selectivity and tolerance in the avian auditory cortex. The Journal of Neuroscience, 32(43), 15158–15168.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Mello, C., Nottebohm, F., & Clayton, D. (1995). Repeated exposure to one song leads to a rapid and persistent decline in an immediate early gene's response to that song in zebra finch telencephalon. The Journal of Neuroscience, 15(10), 6919–6925.PubMedGoogle Scholar
  50. Mello, C. V., & Jarvis, E. D. (2008). Behavior-dependent expression of inducible genes in vocal learning birds. In H. P. Zeigler & P. Marler (Eds.), Neuroscience of birdsong. Cambridge: Cambridge University Press.Google Scholar
  51. Miller, D. B. (1979). Long-term recognition of father’s song by female zebra finches. Nature, 280, 389–391.CrossRefGoogle Scholar
  52. Nagel, K. I., & Doupe, A. J. (2008). Organizing principles of spectro-temporal encoding in the avian primary auditory area field L. Neuron, 58(6), 938–955.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Njegovan, M., & Weisman, R. (1997). Pitch discrimination in field- and isolation-reared black capped chickadees (Parus atricapillus). Journal of Comparative Psychology, 111, 294–301.CrossRefGoogle Scholar
  54. Okanoya, K., & Dooling, R. J. (1987). Hearing in passerine and psittacine birds: A comparative study of absolute and masked auditory thresholds. Journal of Comparative Psychology, 101(1), 7–15.CrossRefPubMedGoogle Scholar
  55. Phan, M. L., Pytte, C. L., & Vicario, D. S. (2006). Early auditory experience generates long-lasting memories that may subserve vocal learning in songbirds. Proceedings of the National Academy of Sciences of the USA, 103(4), 1088–1093.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Poirier, C., Boumans, T., Verhoye, M., Balthazart, J., & Van der Linden, A. (2009). Own-song recognition in the songbird auditory pathway: Selectivity and lateralization. The Journal of Neuroscience, 29(7), 2252–2258.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Poremba, A., Bigelow, J., & Rossi, B. (2013). Processing of communication sounds: Contributions of learning, memory, and experience. Hearing Research, 305, 31–44.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Richner, H. (2016). Interval singing links to phenotypic quality in a songbird. Proceedings of the National Academy of Sciences of the USA, 113(45), 12763–12767.CrossRefPubMedCentralGoogle Scholar
  59. Riebel, K. (2009). Song and female mate choices in zebra finches—a review. Advances in the Study of Behavior, 40, 197–238.CrossRefGoogle Scholar
  60. Saffran, J. R., Werker, J. F., & Werner, L. A. (2006). The infant’s auditory world: Hearing, speech and the beginnings of language. In R. Seigler & D. Kuhn (Eds.), Handbook of child development (pp. 58–108). Hoboken, NJ: John Wiley & Sons.Google Scholar
  61. Sanes, D. H., & Woolley, S. M. (2011). A behavioral framework to guide research on central auditory development and plasticity. Neuron, 72(6), 912–929.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Schneider, D. M., & Woolley, S. M. (2010). Discrimination of communication vocalizations by single neurons and groups of neurons in the auditory midbrain. Journal of Neurophysiology, 103(6), 3248–3265.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Schneider, D. M., & Woolley, S. M. (2011). Extra-classical tuning predicts stimulus-dependent receptive fields in auditory neurons. The Journal of Neuroscience, 31(33), 11867–11878.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Schneider, D. M., & Woolley, S. M. (2013). Sparse and background-invariant coding of vocalizations in auditory scenes. Neuron, 79(1), 141–152.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Stripling, R., Volman, S. F., & Clayton, D. F. (1997). Response modulation in the zebra finch neostriatum: Relationship to nuclear gene regulation. The Journal of Neuroscience, 17(10), 3883–3893.PubMedGoogle Scholar
  66. Stripling, R., Kruse, A. A., & Clayton, D. F. (2001). Development of song responses in the zebra finch caudomedial neostriatum: Role of genomic and electrophysiological activities. Journal of Neurobiology, 48(3), 163–180.CrossRefPubMedGoogle Scholar
  67. Sturdy, C. B., Phillmore, L. S., Sartor, J. J., & Weisman, R. G. (2001). Reduced social contact causes auditory perceptual deficits in zebra finches, (Taeniopygia guttata). Animal Behaviour, 62, 1207–1218.CrossRefGoogle Scholar
  68. Terleph, T. A., Lu, K., & Vicario, D. S. (2008). Response properties of the auditory telencephalon in songbirds change with recent experience and season. PLoS ONE, 3(8), e2854.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Terpstra, N. J., Bolhuis, J. J., & den Boer-Visser, A. M. (2004). An analysis of the neural representation of birdsong memory. The Journal of Neuroscience, 24(21), 4971–4977.CrossRefPubMedGoogle Scholar
  70. Theunissen, F. E., Woolley, S. M., Hsu, A., & Fremouw, T. (2004a). Methods for the analysis of auditory processing in the brain. Annals of the New York Academy of Sciences, 1016, 187–207.CrossRefPubMedGoogle Scholar
  71. Theunissen, F. E., Amin, N., Shaevitz, S. S., Woolley, S. M., et al. (2004b). Song selectivity in the song system and in the auditory forebrain. Annals of the New York Academy of Sciences, 1016, 222–245.CrossRefPubMedGoogle Scholar
  72. Tischmeyer, W., & Grimm, R. (1999). Activation of immediate early genes and memory formation. Cellular and Molecular Life Sciences, 55, 564–574.CrossRefPubMedGoogle Scholar
  73. Tomaszycki, M. L., Sluzas, E. M., Sundberg, K. A., Newman, S. W., & DeVoogd, T. J. (2006). Immediate early gene (ZENK) responses to song in juvenile female and male zebra finches: Effects of rearing environment. Journal of Neurobiology, 66(11), 1175–1182.CrossRefPubMedGoogle Scholar
  74. Wang, Y., Brzozowska-Prechtl, A., & Karten, H. J. (2010). Laminar and columnar auditory cortex in avian brain. Proceedings of the National Academy of Sciences of the USA, 107(28), 12676–12681.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Werker, J. F., & Tees, R. C. (1999). Influences on infant speech processing: Toward a new synthesis. Annual Review of Psychology, 50, 509–535.CrossRefPubMedGoogle Scholar
  76. Woolley, S. M. (2008). Auditory feedback and singing in adult birds. In H. P. Zeigler & P. Marler (Eds.), Neuroscience of birdsong (pp. 228–239). Cambridge: Cambridge University Press.Google Scholar
  77. Woolley, S. M., & Casseday, J. H. (2004). Response properties of single neurons in the zebra finch auditory midbrain: Response patterns, frequency coding, intensity coding, and spike latencies. Journal of Neurophysiology, 91(1), 136–151.CrossRefPubMedGoogle Scholar
  78. Woolley, S. M., & Casseday, J. H. (2005). Processing of modulated sounds in the zebra finch auditory midbrain: Responses to noise, frequency sweeps, and sinusoidal amplitude modulations. Journal of Neurophysiology, 94(2), 1143–1157.CrossRefPubMedGoogle Scholar
  79. Woolley, S. M., & Moore, J. M. (2011). Coevolution in communication senders and receivers: Vocal behavior and auditory processing in multiple songbird species. New Perspectives on Neurobehavioral Evolution, 1225, 155–165.Google Scholar
  80. Woolley, S. M., & Portfors, C. V. (2013). Conserved mechanisms of vocalization coding in mammalian and songbird auditory midbrain. Hearing Research, 305, 45–56.CrossRefPubMedGoogle Scholar
  81. Woolley, S. M., & Rubel, E. W. (1999). High-frequency auditory feedback is not required for adult song maintenance in Bengalese finches. The Journal of Neuroscience, 19(1), 358–371.PubMedGoogle Scholar
  82. Woolley, S. M., Wissman, A. M., & Rubel, E. W. (2001). Hair cell regeneration and recovery of auditory thresholds following aminoglycoside ototoxicity in Bengalese finches. Hearing Research, 153(1–2), 181–195.CrossRefPubMedGoogle Scholar
  83. Woolley, S. M., Fremouw, T. E., Hsu, A., & Theunissen, F. E. (2005). Tuning for spectro-temporal modulations as a mechanism for auditory discrimination of natural sounds. Nature Neuroscience, 8(10), 1371–1379.CrossRefPubMedGoogle Scholar
  84. Woolley, S. M., Gill, P. R., & Theunissen, F. E. (2006). Stimulus-dependent auditory tuning results in synchronous population coding of vocalizations in the songbird midbrain. The Journal of Neuroscience, 26(9), 2499–2512.CrossRefPubMedGoogle Scholar
  85. Woolley, S. M., Gill, P. R., Fremouw, T., & Theunissen, F. E. (2009). Functional groups in the avian auditory system. The Journal of Neuroscience, 29(9), 2780–2793.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Woolley, S. M., Hauber, M. E., & Theunissen, F. E. (2010). Developmental experience alters information coding in auditory midbrain and forebrain neurons. Developmental Neurobiology, 70(4), 235–252.CrossRefPubMedPubMedCentralGoogle Scholar
  87. Yanagihara, S., & Yazaki-Sugiyama, Y. (2016). Auditory experience-dependent cortical circuit shaping for memory formation in bird song learning. Nature Communications, 7, 11946.CrossRefPubMedPubMedCentralGoogle Scholar
  88. Yang, L. M., & Vicario, D. S. (2015). Exposure to a novel stimulus environment alters patterns of lateralization in avian auditory cortex. Neuroscience, 285, 107–118.CrossRefPubMedGoogle Scholar
  89. Zann, R. A. (1996). The zebra finch: A synthesis of field and laboratory studies. Oxford: Oxford University Press.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of PsychologyJerome L. Greene Science CenterNew YorkUSA

Personalised recommendations