Ontogeny of Human Auditory System Function

Chapter
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 64)

Abstract

When Edwin W Rubel published Ontogeny of Auditory System Function in 1984, little was known about human auditory development. This chapter summarizes the progress that has been made in that regard in the subsequent decades. It concludes that although the developmental course of many basic aspects of human auditory function has now been described, the morphological and physiological mechanisms responsible for that development are still largely unknown. Furthermore, it is not clear why some basic auditory abilities mature much later than others or why the developmental course of listening in complex sound environments extends into adolescence. Finally, the existence and timing of critical periods in human auditory development have only begun to be established. Although studies of development of the nonhuman auditory system may elucidate the mechanisms underlying human auditory development, there are difficulties inherent to the comparison of altricial and precocial species. Recent work combining behavioral and neural measures in both humans and nonhumans offers the promise of future progress in this field.

Keywords

Afferent influences Auditory scene analysis Effects of experience Frequency resolution Hearing Intensity Loudness Maturation Psychoacoustics Sensitive period Sensitivity Temporal processing 

Notes

Acknowledgments

Preparation of this chapter was supported by NIH, DC000396.

Compliance with Ethics Requirements

Lynne Werner declares she has no conflict of interest.

References

  1. Abdala, C. (2001). Maturation of the human cochlear amplifier: Distortion product otoacoustic emission suppression tuning curves recorded at low and high primary tone levels. The Journal of the Acoustical Society of America, 110, 1465–1476.PubMedCrossRefGoogle Scholar
  2. Abdala, C. (2003). A longitudinal study of distortion product otoacoustic emission ipsilateral suppression and input/output characteristics in human neonates. The Journal of the Acoustical Society of America, 114, 3239–3250.PubMedCrossRefGoogle Scholar
  3. Abdala, C., & Chatterjee, M. (2003). Maturation of cochlear nonlinearity as measured by distortion product otoacoustic emission suppression growth in humans. The Journal of the Acoustical Society of America, 114, 932–943.PubMedCrossRefGoogle Scholar
  4. Abdala, C., & Folsom, R. C. (1995). The development of frequency resolution in humans as revealed by the auditory brain-stem response recorded with notched-noise masking. The Journal of the Acoustical Society of America, 98, 921–930.PubMedCrossRefGoogle Scholar
  5. Abdala, C., & Keefe, D. H. (2012). Morphological and functional ear development. In L. A. Werner, A. N. Popper, & R. R. Fay (Eds.), Human auditory development (pp. 19–59). New York: Springer Science+Business Media.CrossRefGoogle Scholar
  6. Abdala, C., Keefe, D. H., & Oba, S. I. (2007). Distortion product otoacoustic emission suppression tuning and acoustic admittance in human infants: Birth through 6 months. The Journal of the Acoustical Society of America, 121, 3617–3627.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Abdala, C., Oba, S., & Ramanathan, R. (2008). Changes in the dp-gram during the preterm and early postnatal period. Ear and Hearing, 29, 512–523.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Alain, C., McDonald, K. L., Ostroff, J. M., & Schneider, B. (2001). Age-related changes in detecting a mistuned harmonic. The Journal of the Acoustical Society of America, 109, 2211–2216.PubMedCrossRefGoogle Scholar
  9. Allen, P., & Wightman, F. (1992). Spectral pattern discrimination by children. Journal of Speech Language, and Hearing Research, 35, 222–233.CrossRefGoogle Scholar
  10. Amin, S. B., Orlando, M. S., Dalzell, L. E., Merle, K. S., & Guillet, R. (1999). Morphological changes in serial auditory brainstem responses in 24 to 32 weeks’ gestational age infants during the first week of life. Ear and Hearing, 20, 410–418.PubMedCrossRefGoogle Scholar
  11. Arjmand, E., Harris, D., & Dallos, P. (1988). Developmental changes in frequency mapping of the gerbil cochlea: Comparison of two cochlear locations. Hearing Research, 32, 93–96.PubMedCrossRefGoogle Scholar
  12. Ashmead, D. H., Davis, D., Whalen, T., & Odom, R. (1991). Sound localization and sensitivity to interaural time differences in human infants. Child Development, 62, 1211–1226.PubMedCrossRefGoogle Scholar
  13. Bargones, J. Y., Werner, L. A., & Marean, G. C. (1995). Infant psychometric functions for detection: Mechanisms of immature sensitivity. The Journal of the Acoustical Society of America, 98, 99–111.PubMedCrossRefGoogle Scholar
  14. Berg, K. M., & Boswell, A. E. (1998). Infants’ detection of increments in low- and high-frequency noise. Perception & Psychophysics, 60, 1044–1051.CrossRefGoogle Scholar
  15. Berg, K. M., & Boswell, A. E. (2000). Noise increment detection in children 1 to 3 years of age. Perception & Psychophysics, 62, 868–873.CrossRefGoogle Scholar
  16. Bibas, A. G., Xenellis, J., Michaels, L., Anagnostopoulou, S., et al. (2008). Temporal bone study of development of the organ of corti: Correlation between auditory function and anatomical structure. The Journal of Laryngology & Otology, 122, 336–342.Google Scholar
  17. Birnholz, J. C., & Benacerraf, B. R. (1983). The development of human fetal hearing. Science, 222, 516–518.PubMedCrossRefGoogle Scholar
  18. Brienesse, P., Maertzdorf, W. J., Anteunis, L. J. C., Manni, J. J., & Blanco, C. E. (1998). Click-evoked oto-acoustic emission measurement in preterm infants. European Journal of Pediatrics, 157, 999–1003.PubMedCrossRefGoogle Scholar
  19. Burns, E. B., & Viemeister, N. F. (1981). Played again SAM: Further observations on the pitch of amplitude-modulated noise. The Journal of the Acoustical Society of America, 70, 1655–1660.CrossRefGoogle Scholar
  20. Buss, E., Hall, J. W., Grose, J. H., & Dev, M. B. (1999). Development of adult-like performance in backward, simultaneous, and forward masking. Journal of Speech, Language, and Hearing Research, 42, 844–849.PubMedCrossRefGoogle Scholar
  21. Buss, E., Hall, J. W., & Grose, J. H. (2006). Development and the role of internal noise in detection and discrimination thresholds with narrow band stimuli. The Journal of the Acoustical Society of America, 120, 2777–2788.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Buss, E., Hall, J. W., & Grose, J. H. (2009). Psychometric functions for pure tone intensity discrimination: Slope differences in school-aged children and adults. The Journal of the Acoustical Society of America, 125, 1050–1058.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Buss, E., Hall, J. W., & Grose, J. H. (2012). Development of auditory coding as reflected in psychophysical performance. In L. A. Werner, A. N. Popper, & R. R. Fay (Eds.), Human auditory development. New York: Springer Science+Business Media.Google Scholar
  24. Cabrera, L., & Werner, L. A. (2017). Infants’ and adults’ use of temporal cues in consonant discrimination. Ear and Hearing 38, 497–506.PubMedCrossRefGoogle Scholar
  25. Clarkson, M. G., Clifton, R. K., & Perris, E. E. (1988). Infant timbre perception: Discrimination of spectral envelopes. Perception & Psychophysics, 43, 15–20.CrossRefGoogle Scholar
  26. Clifton, R. K., Gwiazda, J., Bauer, J., Clarkson, M., & Held, R. (1988). Growth in head size during infancy: Implications for sound localization. Developmental Psychology, 24, 477–483.CrossRefGoogle Scholar
  27. Clifton, R. K., Perris, E. E., & Bullinger, A. (1991). Infants’ perception of auditory space. Developmental Psychology, 27, 187–197.CrossRefGoogle Scholar
  28. Collins, A. A., & Gescheider, G. A. (1989). The measurement of loudness in individual children and adults by absolute magnitude estimation and cross-modality matching. The Journal of the Acoustical Society of America, 85, 2012–2021.PubMedCrossRefGoogle Scholar
  29. Cone, B., & Whitaker, R. (2013). Dynamics of infant cortical auditory evoked potentials (caeps) for tone and speech tokens. International Journal of Pediatric Otorhinolaryngology, 77, 1162–1173.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Cone-Wesson, B., Ma, E., & Fowler, C.G. (1997). Effect of stimulus level and frequency on ABR and MLR binaural interaction in human neonates. Hearing Research, 106, 163–178.PubMedCrossRefGoogle Scholar
  31. Eddins, D. A., & Green, D. M. (1995). Temporal integration and temporal resolution. In B. C. J. Moore (Ed.), Hearing (pp. 207–242). San Diego: Academic Press.CrossRefGoogle Scholar
  32. Eggermont, J. J. (1992). Development of auditory evoked-potentials. Acta Oto-Laryngologica, 112, 197–200.PubMedCrossRefGoogle Scholar
  33. Eggermont, J. J., & Moore, J. K. (2012). Morphological and functional development of the auditory nervous system. In L. A. Werner, A. N. Popper, & R. R. Fay (Eds.), Human auditory development (pp. 61–105). New York: Springer Science+Business Media.CrossRefGoogle Scholar
  34. Eggermont, J. J., Ponton, C. W., Coupland, S. G., & Winkelaar, R. (1991a). Frequency-dependent maturation of the cochlea and brain-stem evoked-potentials. Acta Oto-Laryngologica, 111, 220–224.PubMedCrossRefGoogle Scholar
  35. Eggermont, J. J., Ponton, C. W., Coupland, S. G., & Winkelaar, R. (1991b). Maturation of the traveling-wave delay in the human cochlea. The Journal of the Acoustical Society of America, 90, 288–298.PubMedCrossRefGoogle Scholar
  36. Eggermont, J. J., Brown, D. K., Ponton, C. W., & Kimberley, B. P. (1996). Comparison of distortion product otoacoustic emission (DPOAE) and auditory brainstem response (ABR) traveling wave delay measurements suggests frequency-specific synapse maturation. Ear and Hearing, 17, 386–394.PubMedCrossRefGoogle Scholar
  37. Elfenbein, J. L., Small, A. M., & Davis, M. (1993). Developmental patterns of duration discrimination. Journal of Speech, Language, and Hearing Research, 36, 842–849.CrossRefGoogle Scholar
  38. Fassbender, C. (1993). Auditory grouping and segregation processes in infancy. Norderstedt, Germany: Kaste Verlag.Google Scholar
  39. Fernald, A., & Kuhl, P. (1987). Acoustic determinants of infant perception for motherese speech. Infant Behavior and Development, 10, 279–293.CrossRefGoogle Scholar
  40. Folland, N. A., Butler, B. E., Smith, N. A., & Trainor, L. J. (2012). Processing simultaneous auditory objects: Infants’ ability to detect mistuning in harmonic complexes. The Journal of the Acoustical Society of America, 131, 993–997.PubMedCrossRefGoogle Scholar
  41. Folsom, R. C., & Wynne, M. K. (1987). Auditory brainstem responses from human adults and infants: Wave V tuning curves. The Journal of the Acoustical Society of America, 81, 412–417.PubMedCrossRefGoogle Scholar
  42. Furst, M., Bresloff, I., Levine, R. A., Merlob, P. L., & Attias, J. J. (2004). Interaural time coincidence detectors are present at birth: Evidence from binaural interaction. Hearing Research, 187, 63–72.PubMedCrossRefGoogle Scholar
  43. Gerhardt, K. J., & Abrams, R. M. (1996). Fetal hearing: Characterization of the stimulus and response. Seminars in Perinatology, 20, 11–20.PubMedCrossRefGoogle Scholar
  44. Gordon, K. A., Papsin, B. C., & Harrison, R. V. (2006). An evoked potential study of the developmental time course of the auditory nerve and brainstem in children using cochlear implants. Audiology and Neuro-Otology, 11, 7–23.PubMedCrossRefGoogle Scholar
  45. Gordon, K. A., Valero, J., Jewell, S. F., Ahn, J., & Papsin, B. C. (2010). Auditory development in the absence of hearing in infancy. NeuroReport, 21, 163–167.PubMedCrossRefGoogle Scholar
  46. Gordon, K. A., Deighton, M. R., Abbasalipour, P., & Papsin, B. C. (2014). Perception of binaural cues develops in children who are deaf through bilateral cochlear implantation. PLoS ONE, 9(12), e114841.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Gorga, M. P., Reiland, J. K., Beauchaine, K. A., Worthington, D. W., & Jesteadt, W. (1987). Auditory brainstem responses from graduates of an intensive care nursery: Normal patterns of response. Journal of Speech, Language, and Hearing Research, 30, 311–318.CrossRefGoogle Scholar
  48. Gorga, M. P., Kaminski, J. R., Beauchaine, K. L., Jesteadt, W., & Neely, S. T. (1989). Auditory brainstem responses from children three months to three years of age: Normal patterns of response II. Journal of Speech, Language, and Hearing Research, 32, 281–288.CrossRefGoogle Scholar
  49. Grieco-Calub, T. M., Litovsky, R. Y., & Werner, L. A. (2008). Using the observer-based psychophysical procedure to assess localization acuity in toddlers who use bilateral cochlear implants. Otology and Neurotology, 20(2), 235–239.CrossRefGoogle Scholar
  50. Hall, J. W., & Grose, J. H. (1991). Notched-noise measures of frequency selectivity in adults and children using fixed-masker-level and fixed-signal-level presentation. Journal of Speech, Language, and Hearing Research, 34, 651–660.CrossRefGoogle Scholar
  51. Hall, J. W., & Grose, J. H. (1994). Development of temporal resolution in children as measured by the temporal-modulation transfer-function. The Journal of the Acoustical Society of America, 96, 150–154.PubMedCrossRefGoogle Scholar
  52. Han, Y. K., Kover, H., Insanally, M. N., Semerdjian, J. H., & Bao, S. W. (2007). Early experience impairs perceptual discrimination. Nature Neuroscience, 10, 1191–1197.PubMedCrossRefGoogle Scholar
  53. Harris, D., & Dallos, P. (1984). Ontogenetic changes in frequency mapping in a mammalian ear. Science, 225, 741–743.PubMedCrossRefGoogle Scholar
  54. Harris, J. A., & Rubel, E. W. (2006). Afferent regulation of neuron number in the cochlear nucleus: Cellular and molecular analyses of a critical period. Hearing Research, 216, 127–137.PubMedCrossRefGoogle Scholar
  55. Hartley, D. E. H., Wright, B. A., Hogan, S. C., & Moore, D. R. (2000). Age-related improvements in auditory backward and simultaneous masking in 6- to 10-year-old children. Journal of Speech, Language, and Hearing Research, 43, 1402–1415.PubMedCrossRefGoogle Scholar
  56. He, C., & Trainor, L. J. (2009). Finding the pitch of the missing fundamental in infants. The Journal of Neuroscience, 29, 7718–7722.PubMedCrossRefGoogle Scholar
  57. Hepper, P. G., & Shahidullah, B. S. (1994). Development of fetal hearing. Archives of Disease in Childhood, 71, F81–F87.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Himelfarb, M. Z., Popelka, G. R., & Shanon, E. (1979). Tympanometry in normal neonates. Journal of Speech, Language, and Hearing Research, 22, 179–191.CrossRefGoogle Scholar
  59. Horn, D., Hutton-Gerhards, C., & Werner, L. (2016). Temporal modulation cutoff frequency in normal hearing infants. Abstracts of the Midwinter Meeting of the Association for Research in Otolaryngology, 39, 367.Google Scholar
  60. Horn, D. L., Won, J. H., Rubinstein, J. T., & Werner, L. A. (2017). Spectral ripple discrimination in normal hearing infants. The Journal of the Acoustical Society of America, Indiana University 141, 613–623.Google Scholar
  61. Houston, D. M., Beer, J., Bergeson, T. R., Chin, S. B., et al. (2012a). The ear is connected to the brain: Some new directions in the study of children with cochlear implants at Indiana University. Journal of the American Academy of Audiology, 23, 446–463.Google Scholar
  62. Houston, D. M., Stewart, J., Moberly, A., Hollich, G., & Miyamoto, R. T. (2012b). Word learning in deaf children with cochlear implants: Effects of early auditory experience. Developmental Science, 15, 448–461.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Keefe, D. H., Bulen, J. C., Arehart, K. H., & Burns, E. M. (1993). Ear-canal impedance and reflection coefficient in human infants and adults. The Journal of the Acoustical Society of America, 94, 2617–2638.PubMedCrossRefGoogle Scholar
  64. Keefe, D. H., Burns, E. M., Bulen, J. C., & Campbell, S. L. (1994). Pressure transfer function from the diffuse field to the human infant ear canal. The Journal of the Acoustical Society of America, 95, 355–371.PubMedCrossRefGoogle Scholar
  65. Keefe, D. H., Folsom, R. C., Gorga, M. P., Vohr, B. R., et al. (2000). Identification of neonatal hearing impairment: Ear-canal measurements of acoustic admittance and reflectance in neonates. Ear and Hearing, 21, 443–461.PubMedCrossRefGoogle Scholar
  66. Keefe, D. H., Zhao, F., Neely, S. T., Gorga, M. P., & Vohr, B. R. (2003). Ear-canal acoustic admittance and reflectance effects in human neonates. I. Predictions of otoacoustic emission and auditory brainstem responses. The Journal of the Acoustical Society of America, 113, 389–406.PubMedCrossRefGoogle Scholar
  67. Keller, T. A., & Cowan, N. (1994). Developmental increase in the duration of memory for tone pitch. Developmental Psychology, 30, 855–863.CrossRefGoogle Scholar
  68. Keuroghlian, A. S., & Knudsen, E. I. (2007). Adaptive auditory plasticity in developing and adult animals. Progress in Neurobiology, 82, 109–121.PubMedCrossRefGoogle Scholar
  69. Key, A. P. F., Lambert, E. W., Aschner, J. L., & Maitre, N. L. (2012). Influence of gestational age and postnatal age on speech sound processing in NICU infants. Psychophysiology, 49, 720–731.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kilian, C. F., Royle, N., Totten, C. L., Raine, C. H., & Lovett, R. E. S. (2015). The effect of early auditory experience on the spatial listening skills of children with bilateral cochlear implants. International Journal of Pediatric Otorhinolaryngology, 79, 2159–2165.CrossRefGoogle Scholar
  71. King, A. J., Kacelnik, O., Mrsic-Flogel, T. D., Schnupp, J. W. H., et al. (2001). How plastic is spatial hearing? Audiology and Neuro-Otology, 6, 182–186.PubMedCrossRefGoogle Scholar
  72. Knudsen, E. I. (2004). Sensitive periods in the development of the brain and behavior. Journal of Cognitive Neuroscience, 16, 1412–1425.PubMedCrossRefGoogle Scholar
  73. Kuhl, P. K., Tsao, F. M., & Liu, H. M. (2003). Foreign-language experience in infancy: Effects of short-term exposure and social interaction on phonetic learning. Proceedings of the National Academy of Sciences of the USA, 100, 9096–9101.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Lahav, A., & Skoe, E. (2014). An acoustic gap between the NICU and womb: A potential risk for compromised neuroplasticity of compromised neuroplasticity of the auditory system in preterm infants. Frontiers in Neuroscience, 8, 381.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Lary, S., Briassoulis, G., de Vries, L., Dubowitz, L. M. S., & Dubowitz, V. (1985). Hearing threshold in preterm and term infants by auditory brainstem response. Journal of Pediatrics, 107, 593–599.PubMedCrossRefGoogle Scholar
  76. Lasky, R. E. (1991). The effects of rate and forward masking on human adult and newborn auditory evoked response thresholds. Developmental Psychobiology, 24, 21–64.CrossRefGoogle Scholar
  77. Lau, B. K., & Werner, L. A. (2012). Perception of missing fundamental pitch by 3- and 4-month-old human infants. The Journal of the Acoustical Society of America, 132, 3874–3882.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Lau, B. K., & Werner, L. A. (2014a). Infant missing fundamental pitch sensitivity and melody discrimination. Abstracts of the Midwinter Meeting of the Association for Research in Otolaryngology, 37, 785.Google Scholar
  79. Lau, B. K., & Werner, L. A. (2014b). Perception of the pitch of unresolved harmonics by 3- and 7-month-old human infants. The Journal of the Acoustical Society of America, 136, 760–767.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Lau, B. K., Lalonde, K., Oster, M. M., & Werner, L. A. (2017). Infant pitch perception: Missing fundamental melody discrimination. The Journal of the Acoustical Society of America, 141, 63–72.CrossRefGoogle Scholar
  81. Lavigne-Rebillard, M., & Pujol, R. (1987). Surface aspects of the developing human organ of corti. Acta Oto-Laryngologica, 436, 43–50.CrossRefGoogle Scholar
  82. Lavigne-Rebillard, M., & Pujol, R. (1990). Auditory hair cells in human fetuses: Synaptogenesis and ciliogenesis. Journal of Electron Microsccopy Technique, 15, 115–122.CrossRefGoogle Scholar
  83. Leibold, L. J. (2012). Development of auditory scene analysis and auditory attention. In L. A. Werner, A. N. Popper, & R. R. Fay (Eds.), Human auditory development (pp. 137–161). New York: Springer Science+Business Media.CrossRefGoogle Scholar
  84. Leibold, L. J., & Bonino, A. Y. (2009). Release from informational masking in children: Effect of multiple signal bursts. The Journal of the Acoustical Society of America, 125, 2200–2208.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Leibold, L. J., & Neff, D. L. (2007). Effects of masker-spectral variability and masker fringes in children and adults. The Journal of the Acoustical Society of America, 121, 3666–3676.PubMedCrossRefGoogle Scholar
  86. Leibold, L. J., & Neff, D. L. (2011). Masking by a remote-frequency noise band in children and adults. Ear and Hearing, 32, 663–666.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Leibold, L. J., & Werner, W. A. (2002). Relationship between intensity and reaction time in normal hearing infants and adults. Ear and Hearing, 23, 92–97.PubMedCrossRefGoogle Scholar
  88. Levi, E. C., Folsom, R. C., & Dobie, R. A. (1993). Amplitude-modulation following response (AMFR): Effects of modulation rate, carrier frequency, age, and state. Hearing Research, 68, 42–52.PubMedCrossRefGoogle Scholar
  89. Levi, E. C., Folsom, R. C., & Dobie, R. A. (1995). Coherence analysis of envelope-following responses (EFRs) and frequency-following responses (FFRs) in infants and adults. Hearing Research, 89, 21–27.PubMedCrossRefGoogle Scholar
  90. Litovsky, R. Y. (1997). Developmental changes in the precedence effect: Estimates of minimum audible angle. The Journal of the Acoustical Society of America, 102, 1739–1745.PubMedCrossRefGoogle Scholar
  91. Litovsky, R. (2012). Development of binaural and spatial hearing. In L. A. Werner, A. N. Popper, & R. R. Fay (Eds.), Human auditory development (pp. 163–195). New York: Springer Science+Business Media.CrossRefGoogle Scholar
  92. Litovsky, R. Y., Jones, G. L., Agrawal, S., & van Hoesel, R. (2010). Effect of age at onset of deafness on binaural sensitivity in electric hearing in humans. The Journal of the Acoustical Society of America, 127, 400–414.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Locher, H., de Groot, J., van Iperen, L., Huisman, M. A., et al. (2015). Development of the stria vascularis and potassium regulation in the human fetal cochlea: Insights into hereditary sensorineural hearing loss. Developmental Neurobiology, 75, 1219–1240.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Manley, G. A., Gummer, A. W., Fay, R. R., & Popper, A. N. (Eds.) (2017). Understanding the cochlea. New York: Springer Science+Business Media.Google Scholar
  95. Marean, G. C., Werner, L. A., & Kuhl, P. K. (1992). Vowel categorization by very young infants. Developmental Psychology, 28, 396–405.CrossRefGoogle Scholar
  96. Maye, J., Werker, J. F., & Gerken, L. (2002). Infant sensitivity to distributional information can affect phonetic discrimination. Cognition, 82, B101–B111.PubMedCrossRefGoogle Scholar
  97. McAdams, S., & Bertoncini, J. (1997). Organization and discrimination of repeating sound sequences by newborn infants. The Journal of the Acoustical Society of America, 102(5 Pt 1), 2945–2953.PubMedCrossRefGoogle Scholar
  98. Mehler, J., Jusczyk, P. W., Lambertz, G., Halsted, N., et al. (1988). A precursor of language acquisition in young infants. Cognition, 29, 143–178.PubMedCrossRefGoogle Scholar
  99. Mills, D. M., & Rubel, E. W. (1996). Development of the cochlear amplifier. The Journal of the Acoustical Society of America, 100, 428–441.PubMedCrossRefGoogle Scholar
  100. Moon, C., Lagercrantz, H., & Kuhl, P. K. (2015). Language experienced in-utero affects vowel perception after birth: A two-country study. Acta Pædiatrica, 102, 156–160.CrossRefGoogle Scholar
  101. Moore, D. R. (1990). Auditory brain-stem of the ferret: Early cessation of developmental sensitivity of neurons in the cochlear nucleus to removal of the cochlea. The Journal of Comparative Neurology, 302, 810–823.PubMedCrossRefGoogle Scholar
  102. Moore, D. R., Ferguson, M. A., Halliday, L. F., & Riley, A. (2008). Frequency discrimination in children: Perception, learning and attention. Hearing Research, 238, 147–154.PubMedCrossRefGoogle Scholar
  103. Morrongiello, B. A. (1987). Infants’ localization of sounds in the median sagittal plane: Effects of signal frequency. The Journal of the Acoustical Society of America, 82, 900–905.PubMedCrossRefGoogle Scholar
  104. Morrongiello, B. A. (1988a). Infants’ localization of sounds along two spatial dimensions: Horizontal and vertical axes. Infant Behavior and Development, 11, 127–143.Google Scholar
  105. Morrongiello, B. A. (1988b). Infants’ localization of sounds along the horizontal axis: Estimates of minimum audible angle. Developmental Psychology, 24, 8–13.Google Scholar
  106. Morrongiello, B. A., Fenwick, K., & Chance, G. (1990). Sound localization acuity in very young infants: An observer-based testing procedure. Developmental Psychology, 26, 75–84.CrossRefGoogle Scholar
  107. Neff, D. L., & Green, D. M. (1987). Masking produced by spectral uncertainty with multicomponent maskers. Perception and Psychophysics, 41(5), 409–415.PubMedCrossRefGoogle Scholar
  108. Nemeth, R., Haden, G. P., Torok, M., & Winkler, I. (2015). Processing of horizontal sound localization cues in newborn infants. Ear and Hearing, 36, 550–556.PubMedCrossRefGoogle Scholar
  109. Nicholas, J. G., & Geers, A. E. (2007). Will they catch up? The role of age at cochlear implantation in the spoken language development of children with severe to profound hearing loss. Journal of Speech, Language, and Hearing Research, 50, 1048–1062.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Okabe, K. S., Tanaka, S., Hamada, H., Miura, T., & Funai, H. (1988). Acoustic impedance measured on normal ears of children. Journal of the Acoustical Society of Japan, 9, 287–294.CrossRefGoogle Scholar
  111. Olsho, L. W., Koch, E. G., & Halpin, C. F. (1987). Level and age effects in infant frequency discrimination. The Journal of the Acoustical Society of America, 82, 454–464.PubMedCrossRefGoogle Scholar
  112. Olsho, L. W., Koch, E. G., Carter, E. A., Halpin, C. F., & Spetner, N. B. (1988). Pure-tone sensitivity of human infants. The Journal of the Acoustical Society of America, 84, 1316–1324.PubMedCrossRefGoogle Scholar
  113. Pena, M., Werker, J. F., & Dehaene-Lambertz, G. (2012). Earlier speech exposure does not accelerate speech acquisition. The Journal of Neuroscience, 32, 11159–11163.PubMedCrossRefGoogle Scholar
  114. Peter, V., Wong, K., Narne, V. K., Sharma, M., et al. (2014). Assessing spectral and temporal processing in children and adults using temporal modulation transfer function (TMTF), iterated ripple noise (IRN) perception, and spectral ripple discrimination (SRD). Journal of the American Academy of Audiology, 25, 210–218.PubMedCrossRefGoogle Scholar
  115. Plack, C. J. (2014). The sense of hearing, 2nd ed. New York: Psychology Press.Google Scholar
  116. Plack, C. J., Barker, D., & Hall, D. A. (2014). Pitch coding and pitch processing in the human brain. Hearing Research, 307, 53–64.PubMedCrossRefGoogle Scholar
  117. Ponton, C. W., Don, M., Eggermont, J. J., Waring, M. D., et al. (1996). Auditory system plasticity in children after long periods of complete deafness. NeuroReport, 8, 61–65.PubMedCrossRefGoogle Scholar
  118. Ponton, C. W., Eggermont, J. J., Kwong, B., & Don, M. (2000). Maturation of human central auditory system activity: Evidence from multi-channel evoked potentials. Clinical Neurophysiology, 111, 220–236.PubMedCrossRefGoogle Scholar
  119. Prieve, B. A., Fitzgerald, T. S., & Kemp, D. T. (1997). Basic characteristics of distortion product otoacoustice emissions in infants and children. The Journal of the Acoustical Society of America, 100, 3871–3880.Google Scholar
  120. Quinonez, R. E., & Crawford, M. R. (1998). Longitudinal distortion product otoacoustic emission (dpe) latency changes in preterm neonates. Acta Oto-Laryngologica, 118, 26–31.PubMedCrossRefGoogle Scholar
  121. Rosen, M. J., Sarro, E. C., Kelly, J. B., & Sanes, D. H. (2012). Diminished behavioral and neural sensitivity to sound modulation is associated with moderate developmental hearing loss. PLoS ONE, 7, 13.CrossRefGoogle Scholar
  122. Rotteveel, J. J., de Graaf, R., Colon, E. J., Stegeman, D. F., & Visco, Y. M. (1987). The maturation of the central auditory conduction in preterm infants until three months post term. II. The auditory brainstem responses (ABRs). Hearing Research, 26, 21–35.PubMedCrossRefGoogle Scholar
  123. Rubel, E. W. (1984). Ontogeny of auditory system function. Annual Review of Physiology, 46, 213–229.PubMedCrossRefGoogle Scholar
  124. Rubel, E. W., & Ryals, B. M. (1983). Development of the place principle: Acoustic trauma. Science, 219, 512–514.PubMedCrossRefGoogle Scholar
  125. Saffran, J., Werker, J., & Werner, L. A. (2006). The infant’s auditory world: Hearing, speech and the beginnings of language. In W. Damon, R. M. Lerner, D. Kuhn, & R. S. Siegler (Eds.), Handbook of child psychology, Vol. 2: cognition, perception, and language, 6th ed. (pp. 58–108). Hoboken, NJ: John Wiley & Sons.Google Scholar
  126. Sanes, D. H., & Bao, S. W. (2009). Tuning up the developing auditory CNS. Current Opinion in Neurobiology, 19, 188–199.PubMedPubMedCentralCrossRefGoogle Scholar
  127. Schellenberg, E. G., & Trehub, S. E. (1999). Culture-general and culture-specific factors in the discrimination of melodies. Journal of Experimental Child Psychology, 74, 107–127.PubMedCrossRefGoogle Scholar
  128. Schneider, B. A., Trehub, S. E., Morrongiello, B. A., & Thorpe, L. A. (1986). Auditory sensitivity in preschool children. The Journal of the Acoustical Society of America, 79, 447–452.PubMedCrossRefGoogle Scholar
  129. Schneider, B. A., Trehub, S. E., Morrongiello, B. A., & Thorpe, L. A. (1989). Developmental changes in masked thresholds. The Journal of the Acoustical Society of America, 86, 1733–1742.PubMedCrossRefGoogle Scholar
  130. Schneider, B. A., Morrongiello, B. A., & Trehub, S. E. (1990). The size of the critical band in infants, children, and adults. Journal of Experimental Psychology [Human Perception and Performance], 16, 642–652.CrossRefGoogle Scholar
  131. Seidl, A. H., & Grothe, B. (2005). Development of sound localization mechanisms in the mongolian gerbil is shaped by early acoustic experience. Journal of Neurophysiology, 94, 1028–1036.PubMedCrossRefGoogle Scholar
  132. Silva, I., & Epstein, M. (2010). Estimating loudness growth from tone-burst evoked responses. The Journal of the Acoustical Society of America, 127, 3629–3642.PubMedPubMedCentralCrossRefGoogle Scholar
  133. Sinnott, J. M., & Aslin, R. N. (1985). Frequency and intensity discrimination in human infants and adults. The Journal of the Acoustical Society of America, 78, 1986–1992.PubMedCrossRefGoogle Scholar
  134. Skoe, E., Krizman, J., Anderson, S., & Kraus, N. (2015). Stability and plasticity of auditory brainstem function across the lifespan. Cerebral Cortex, 25, 1415–1426.PubMedCrossRefGoogle Scholar
  135. Smith, N. A., & Trainor, L. J. (2011). Auditory stream segregation improves infants’ selective attention to target tones amid distracters. Infancy, 16, 1–14.CrossRefGoogle Scholar
  136. Spetner, N. B., & Olsho, L. W. (1990). Auditory frequency resolution in human infancy. Child Development, 61, 632–652.PubMedCrossRefGoogle Scholar
  137. Supin, A. Y., Popov, V. V., Milekhina, O. N., & Tarakanov, M. B. (1998). Ripple density resolution for various rippled-noise patterns. The Journal of the Acoustical Society of America, 103, 2042–2050.PubMedCrossRefGoogle Scholar
  138. Sussman, E. S., Ceponiene, R., Shestakova, A., Naatanen, R., & Winkler, I. (2001). Auditory stream segregation processes operate similarly in school-aged children and adults. Hearing Research, 153, 108–114.PubMedCrossRefGoogle Scholar
  139. Thai-Van, H., Cozma, S., Boutitie, F., Disant, F., et al. (2007). The pattern of auditory brainstem response wave V maturation in cochlear-implanted children. Clinical Neurophysiology, 118, 676–689.PubMedCrossRefGoogle Scholar
  140. Tharpe, A. M., & Ashmead, D. H. (2001). A longitudinal investigation of infant auditory sensitivity. American Journal of Audiology, 10, 104–112.PubMedCrossRefGoogle Scholar
  141. Tognola, G., Parazzini, M., de Jager, P., Brienesse, P., et al. (2005). Cochlear maturation and otoacoustic emissions in preterm infants: A time-frequency approach. Hearing Research, 199, 71–80.PubMedCrossRefGoogle Scholar
  142. Trainor, L. J., Samuel, S. S., Desjardins, R. N., & Sonnadara, R. R. (2001). Measuring temporal resolution in infants using mismatch negativity. NeuroReport, 12, 2443–2448.PubMedCrossRefGoogle Scholar
  143. Trehub, S. E. (2001). Musical predispositions in infancy. In R. J. Zatorre & I. Peretz (Eds.), The biological foundations of music. Annals of the New York Academy of Sciences, Vol. 930, 1–16.Google Scholar
  144. Trehub, S. E., Schneider, B. A., & Endman, M. (1980). Developmental changes in infants' sensitivity to octave-band noises. Journal of Experimental Child Psychology, 29, 282–293.PubMedCrossRefGoogle Scholar
  145. Ubbink, S. W. J., van Dijk, P., de Kleine, E., Brienesse, P., et al. (2011). Frequency shifts with age in click-evoked otoacoustic emissions of preterm infants. The Journal of the Acoustical Society of America, 129, 3788–3796.PubMedCrossRefGoogle Scholar
  146. Van Deun, L., van Wieringen, A., Van den Bogaert, T., Scherf, F., et al. (2009). Sound localization, sound lateralization, and binaural masking level differences in young children with normal hearing. Ear and Hearing, 30, 178–190.PubMedCrossRefGoogle Scholar
  147. Voss, S. E., & Herrmann, B. S. (2005). How does the sound pressure generated by circumaural, supra-aural, and insert earphones differ for adult and infant ears? Ear and Hearing, 26, 636–650.PubMedCrossRefGoogle Scholar
  148. Wang, X. Q., & Walker, K. M. M. (2012). Neural mechanisms for the abstraction and use of pitch information in auditory cortex. The Journal of Neuroscience, 32, 13339–13342.PubMedPubMedCentralCrossRefGoogle Scholar
  149. Weikum, W. M., Oberlander, T. F., Hensch, T. K., & Werker, J. F. (2012). Prenatal exposure to antidepressants and depressed maternal mood alter trajectory of infant speech perception. Proceedings of the National Academy of Sciences of the USA, 109, 17221–17227.PubMedPubMedCentralCrossRefGoogle Scholar
  150. Werker, J. F. (1994). Cross-language speech perception: Developmental change does not involve loss. In J. C. Goodman, & H. C. Nusbaum (Eds.), The development of speech perception (pp. 93–120). Cambridge, MA: MIT Press.Google Scholar
  151. Werker, J. F., & Hensch, T. K. (2015). Critical periods in speech perception: New directions. Annual Review of Psychology, 66, 173–196.PubMedCrossRefGoogle Scholar
  152. Werker, J. F., & Tees, R. C. (1984). Cross-language speech perception: Evidence for perceptual reorganization during the first year of life. Infant Behavior & Development, 7, 49–63.CrossRefGoogle Scholar
  153. Werner, L. A. (1999). Forward masking among infant and adult listeners. The Journal of the Acoustical Society of America, 105, 2445–2453.PubMedCrossRefGoogle Scholar
  154. Werner, L. A. (2013). Infants’ detection and discrimination of sounds in modulated maskers. The Journal of the Acoustical Society of America, 133, 4156–4167.PubMedPubMedCentralCrossRefGoogle Scholar
  155. Werner, L. A., & Bargones, J. Y. (1991). Sources of auditory masking in infants: Distraction effects. Perception & Psychophysics, 50, 405–412.CrossRefGoogle Scholar
  156. Werner, L. A., Marean, G. C., Halpin, C. F., Spetner, N. B., & Gillenwater, J. M. (1992). Infant auditory temporal acuity: Gap detection. Child Development, 63, 260–272.PubMedCrossRefGoogle Scholar
  157. Werner, L. A., Folsom, R. C., & Mancl, L. R. (1993). The relationship between auditory brainstem response and behavioral thresholds in normal hearing infants and adults. Hearing Research, 68, 131–141.PubMedCrossRefGoogle Scholar
  158. Werner, L. A., Folsom, R. C., & Mancl, L. R. (1994). The relationship between auditory brainstem response latencies and behavioral thresholds in normal hearing infants and adults. Hearing Research, 77, 88–98.PubMedCrossRefGoogle Scholar
  159. Werner, L. A., Folsom, R. C., Mancl, L. R., & Syapin, C. (2001). Human auditory brainstem response to temporal gaps in noise. Journal of Speech, Language, and Hearing Research, 44, 737–750.PubMedCrossRefGoogle Scholar
  160. Wightman, F., & Kistler, D. J. (2005). Informational masking of speech in children: Effects of ipsilateral and contralateral distracters. The Journal of the Acoustical Society of America, 118, 3164–3176.PubMedPubMedCentralCrossRefGoogle Scholar
  161. Wright, B. A., & Fitzgerald, M. B. (2001). Different patterns of human discrimination learning for two interaural cues to sound-source location. Proceedings of the National Academy of Sciences of the USA, 98, 12307–12312.PubMedPubMedCentralCrossRefGoogle Scholar
  162. Yeung, H. H., & Werker, J. F. (2009). Learning words’ sounds before learning how words sound: 9-month-olds use distinct objects as cues to categorize speech information. Cognition, 113, 234–243.PubMedCrossRefGoogle Scholar
  163. Zatorre, R. J. (2003). Absolute pitch: A model for understanding the influence of genes and development on neural and cognitive function. Nature Neuroscience, 6, 692–695.PubMedCrossRefGoogle Scholar
  164. Zeng, F. G., & Fay, R. R. (Eds.) (2004). Cochlear implants: Auditory prostheses and electric hearing. New York: Springer Science+Business Media.Google Scholar
  165. Zhang, L. I., Bao, S. W., & Merzenich, M. M. (2001). Persistent and specific influences of early acoustic environments on primary auditory cortex. Nature Neuroscience, 4, 1123–1130.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Speech and Hearing SciencesUniversity of WashingtonSeattleUSA

Personalised recommendations