Glutamate Signaling in the Auditory Brainstem

Chapter
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 64)

Abstract

Glutamate signaling in the auditory brainstem is a dynamic process. It involves the perfect coordination of pre- and postsynaptic factors that reliably permit the transfer of information between neurons. When compared to other brain regions, glutamate signaling in the auditory brainstem is unique in that it provides the initial mechanisms underlying the perception of behaviorally relevant communication signals. Disruptions in such mechanisms are thought to underlie several hearing-related disorders. Relying on the foundation of work by Dr. Edwin Rubel and colleagues, this chapter offers a conceptual overview of factors that regulate glutamate signaling in the auditory brainstem, as well as determinants responsible for development, activity-dependent regulation, pathophysiology, and neuromodulation.

Keywords

AMPA receptor Cochlear nucleus Heterosynaptic modulation Homeostasis Homosynaptic modulation Inferior colliculus Intracellular calcium concentration Long-term synaptic plasticity Metabotropic glutamate receptor Neural development NMDA receptor Short-term synaptic plasticity Superior olivary complex Synaptic transmission 

Abbreviations

[Ca2+]i

Intracellular free calcium concentration

AMPA-R

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor

AP

Action potential

AVCN

Anteroventral cochlear nucleus

CN

Cochlear nucleus

CNS

Central nervous system

DCN

Dorsal cochlear nucleus

EPSC

Excitatory postsynaptic current

EPSP

Excitatory postsynaptic potential

GABABR

γ-Aminobutyric acid receptor

GPCR

G protein–coupled receptor

IC

Inferior colliculus

iGluR

Ionotropic glutamate receptors

ILD

Interaural level difference

IPSC

Inhibitory postsynaptic current

ITD

Interaural time difference

LSO

Lateral superior olive

LTD

Long-term depression

LTP

Long-term potentiation

mGluR

Metabotropic glutamate receptor

MNTB

Medial nucleus of trapezoid body

MSO

Medial superior olive

NL

Nucleus laminaris

NM

Cochlear nucleus magnocellularis

NMDA-R

Ν-Methyl-d-aspartate receptor

SOC

Superior olivary complex

TTX

Tetrodotoxin

VCN

Ventral cochlear nucleus

VGCC

Voltage-gated calcium channel

Notes

Compliance with Ethics Requirements

Jason Tait Sanchez declares that he has no conflict of interest.

Yong Lu declares that he has no conflict of interest.

References

  1. Anderson, C. T., Radford, R. J., Zastrow, M. L., Zhang, D. Y., et al. (2015). Modulation of extrasynaptic NMDA receptors by synaptic and tonic zinc. Proceedings of the National Academy of Sciences of the USA, 112(20), 2705–2714.CrossRefGoogle Scholar
  2. Barnes-Davies, M., & Forsythe, I. D. (1995). Pre- and postsynaptic glutamate receptors at a giant excitatory synapse in rat auditory brainstem slices. The Journal of Physiology, 488 (Pt 2), 387–406.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bartlett, T. E., & Wang, Y. T. (2013). The intersections of NMDAR-dependent synaptic plasticity and cell survival. Neuropharmacology, 74, 59–68.PubMedCrossRefGoogle Scholar
  4. Berridge, M. J. (2014). Calcium regulation of neural rhythms, memory and Alzheimer’s disease. The Journal of Physiology, 592 (Pt 2), 281–293.PubMedCrossRefGoogle Scholar
  5. Bilak, M. M., Bilak, S. R., & Morest, D. K. (1996). Differential expression of N-methyl-d-aspartate receptor in the cochlear nucleus of the mouse. Neuroscience, 75(4), 1075–1097.PubMedCrossRefGoogle Scholar
  6. Billups, B., Graham, B. P., Wong, A. Y., & Forsythe, I. D. (2005). Unmasking group III metabotropic glutamate autoreceptor function at excitatory synapses in the rat CNS. The Journal of Physiology, 565(Pt 3), 885–896.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Blackmer, T., Kuo, S. P., Bender, K. J., Apostolides, P. F., & Trussell, L. O. (2009). Dendritic calcium channels and their activation by synaptic signals in auditory coincidence detector neurons. The Journal of Neurophysiology, 102(2), 1218–1226.PubMedCrossRefGoogle Scholar
  8. Born, D. E., & Rubel, E. W. (1985). Afferent influences on brain stem auditory nuclei of the chicken: Neuron number and size following cochlea removal. The Journal of Comparative Neurology, 231(4), 435–445.PubMedCrossRefGoogle Scholar
  9. Born, D. E., & Rubel, E. W. (1988). Afferent influences on brain stem auditory nuclei of the chicken: Presynaptic action potentials regulate protein synthesis in nucleus magnocellularis neurons. The Journal of Neuroscience, 8(3), 901–919.PubMedGoogle Scholar
  10. Brenowitz, S., & Trussell, L. O. (2001). Maturation of synaptic transmission at end-bulb synapses of the cochlear nucleus. The Journal of Neuroscience, 21(23), 9487–9498.PubMedGoogle Scholar
  11. Brenowitz, S., David, J., & Trussell, L. (1998). Enhancement of synaptic efficacy by presynaptic GABA(B) receptors. Neuron, 20(1), 135–141.PubMedCrossRefGoogle Scholar
  12. Carzoli, K. L., & Hyson, R. L. (2011). In vivo analysis of the role of metabotropic glutamate receptors in the afferent regulation of chick cochlear nucleus neurons. Hearing Research, 272(1–2), 49–57.PubMedCrossRefGoogle Scholar
  13. Chalifoux, J. R., & Carter, A. G. (2011). GABAB receptor modulation of synaptic function. Current Opinion in Neurobiology, 21(2), 339–344.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Chanda, S., & Xu-Friedman, M. A. (2010). A low-affinity antagonist reveals saturation and desensitization in mature synapses in the auditory brain stem. Journal of Neurophysiology, 103(4), 1915–1926.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Chanda, S., & Xu-Friedman, M. A. (2011). Excitatory modulation in the cochlear nucleus through group I metabotropic glutamate receptor activation. The Journal of Neuroscience, 31(20), 7450–7455.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Code, R. A., & Carr, C. E. (1994). Choline acetyltransferase-immunoreactive cochlear efferent neurons in the chick auditory brainstem. The Journal of Comparative Neurology, 340(2), 161–173.PubMedCrossRefGoogle Scholar
  17. Couchman, K., Grothe, B., & Felmy, F. (2012). Functional localization of neurotransmitter receptors and synaptic inputs to mature neurons of the medial superior olive. Journal of Neurophysiology, 107(4), 1186–1198.PubMedCrossRefGoogle Scholar
  18. Cramer, K. S., Bermingham-McDonogh, O., Krull, C. E., & Rubel, E. W. (2004). EphA4 signaling promotes axon segregation in the developing auditory system. Developmental Biology, 269(1), 26–35.PubMedCrossRefGoogle Scholar
  19. Cramer, K. S., Cerretti, D. P., & Siddiqui, S. A. (2006). EphB2 regulates axonal growth at the midline in the developing auditory brainstem. Developmental Biology, 295(1), 76–89.PubMedCrossRefGoogle Scholar
  20. Denker, A., & Rizzoli, S. O. (2010). Synaptic vesicle pools: An update. Frontiers in Synaptic Neuroscience, 2, 135.PubMedPubMedCentralGoogle Scholar
  21. Dietz, B., Jovanovic, S., Wielsch, B., Nerlich, J., et al. (2012). Purinergic modulation of neuronal activity in developing auditory brainstem. The Journal of Neuroscience, 32(31), 10699–10712.PubMedCrossRefGoogle Scholar
  22. Dingledine, R., Borges, K., Bowie, D., & Traynelis, S. F. (1999). The glutamate receptor ion channels. Pharmacology Reviews, 51(1), 7–61.Google Scholar
  23. Ebert, U., & Ostwald, J. (1995). GABA can improve acoustic contrast in the rat ventral cochlear nucleus. Experimental Brain Research, 104(2), 310–322.PubMedCrossRefGoogle Scholar
  24. Ene, F. A., Kullmann, P. H., Gillespie, D. C., & Kandler, K. (2003). Glutamatergic calcium responses in the developing lateral superior olive: Receptor types and their specific activation by synaptic activity patterns. Journal of Neurophysiology, 90(4), 2581–2591.PubMedCrossRefGoogle Scholar
  25. Ene, F. A., Kalmbach, A., & Kandler, K. (2007). Metabotropic glutamate receptors in the lateral superior olive activate TRP-like channels: Age- and experience-dependent regulation. Journal of Neurophysiology, 97(5), 3365–3375.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Farazifard, R., & Wu, S. H. (2010). Metabotropic glutamate receptors modulate glutamatergic and GABAergic synaptic transmission in the central nucleus of the inferior colliculus. Brain Research, 1325, 28–40.PubMedCrossRefGoogle Scholar
  27. Feldman, D. E., & Knudsen, E. I. (1994). NMDA and non-NMDA glutamate receptors in auditory transmission in the barn owl inferior colliculus. The Journal of Neuroscience, 14(10), 5939–5958.PubMedGoogle Scholar
  28. Feldman, D. E., & Knudsen, E. I. (1997). An anatomical basis for visual calibration of the auditory space map in the barn owl's midbrain. The Journal of Neuroscience, 17(17), 6820–6837.PubMedGoogle Scholar
  29. Feldman, D. E., & Knudsen, E. I. (1998). Pharmacological specialization of learned auditory responses in the inferior colliculus of the barn owl. The Journal of Neuroscience, 18(8), 3073–3087.PubMedGoogle Scholar
  30. Fioravante, D., & Regehr, W. G. (2011). Short-term forms of presynaptic plasticity. Current Opinion in Neurobiology, 21(2), 269–274.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Flint, A. C., Maisch, U. S., Weishaupt, J. H., Kriegstein, A. R., & Monyer, H. (1997). NR2A subunit expression shortens NMDA receptor synaptic currents in developing neocortex. The Journal of Neuroscience, 17(7), 2469–2476.PubMedGoogle Scholar
  32. Forsythe, I. D. (1994). Direct patch recording from identified presynaptic terminals mediating glutamatergic EPSCs in the rat CNS, in vitro. The Journal of Physiology, 479 (Pt 3), 381–387.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Fortune, E. S., & Rose, G. J. (2001). Short-term synaptic plasticity as a temporal filter. Trends in Neuroscience, 24(7), 381–385.CrossRefGoogle Scholar
  34. Franken, T. P., Roberts, M. T., Wei, L., Golding, N. L., & Joris, P. X. (2015). In vivo coincidence detection in mammalian sound localization generates phase delays. Nature Neuroscience, 18(3), 444–452.PubMedPubMedCentralGoogle Scholar
  35. Fujino, K., & Oertel, D. (2003). Bidirectional synaptic plasticity in the cerebellum-like mammalian dorsal cochlear nucleus. Proceedings of the National Academy of Sciences of the USA, 100(1), 265–270.PubMedCrossRefGoogle Scholar
  36. Gambrill, A. C., & Barria, A. (2011). NMDA receptor subunit composition controls synaptogenesis and synapse stabilization. Proceedings of the National Academy of Sciences of the USA, 108(14), 5855–5860.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gillespie, D. C., Kim, G., & Kandler, K. (2005). Inhibitory synapses in the developing auditory system are glutamatergic. Nature Neuroscience, 8(3), 332–338.PubMedCrossRefGoogle Scholar
  38. Hall, B. J., & Ghosh, A. (2008). Regulation of AMPA receptor recruitment at developing synapses. Trends in Neuroscience, 31(2), 82–89.CrossRefGoogle Scholar
  39. Hall, B. J., Ripley, B., & Ghosh, A. (2007). NR2B signaling regulates the development of synaptic AMPA receptor current. The Journal of Neuroscience, 27(49), 13446–13456.PubMedCrossRefGoogle Scholar
  40. Harris, J. A., & Rubel, E. W. (2006). Afferent regulation of neuron number in the cochlear nucleus: Cellular and molecular analyses of a critical period. Hearing Research, 216–217, 127–137.PubMedCrossRefGoogle Scholar
  41. Harris, J. A., Iguchi, F., Seidl, A. H., Lurie, D. I., & Rubel, E. W. (2008). Afferent deprivation elicits a transcriptional response associated with neuronal survival after a critical period in the mouse cochlear nucleus. The Journal of Neuroscience, 28(43), 10990–11002.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hassfurth, B., Grothe, B., & Koch, U. (2010). The mammalian interaural time difference detection circuit is differentially controlled by GABAB receptors during development. The Journal of Neuroscience, 30(29), 9715–9727.PubMedCrossRefGoogle Scholar
  43. He, S., Wang, Y. X., Petralia, R. S., & Brenowitz, S. D. (2014). Cholinergic modulation of large-conductance calcium-activated potassium channels regulates synaptic strength and spine calcium in cartwheel cells of the dorsal cochlear nucleus. The Journal of Neuroscience, 34(15), 5261–5272.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Henley, J. M., Barker, E. A., & Glebov, O. O. (2011). Routes, destinations and delays: Recent advances in AMPA receptor trafficking. Trends in Neuroscience, 34(5), 258–268.CrossRefGoogle Scholar
  45. Hoffpauir, B. K., Grimes, J. L., Mathers, P. H., & Spirou, G. A. (2006). Synaptogenesis of the calyx of Held: Rapid onset of function and one-to-one morphological innervation. The Journal of Neuroscience, 26(20), 5511–5523.PubMedCrossRefGoogle Scholar
  46. Hollmann, M., & Heinemann, S. (1994). Cloned glutamate receptors. Annual Review of Neuroscience, 17, 31–108.PubMedCrossRefGoogle Scholar
  47. Hyson, R. L. (1997). Transneuronal regulation of ribosomes after blockade of ionotropic excitatory amino acid receptors. Brain Research, 749(1), 61–70.PubMedCrossRefGoogle Scholar
  48. Hyson, R. L. (1998). Activation of metabotropic glutamate receptors is necessary for transneuronal regulation of ribosomes in chick auditory neurons. Brain Research, 809(2), 214–220.PubMedCrossRefGoogle Scholar
  49. Hyson, R. L., & Rubel, E. W. (1989). Transneuronal regulation of protein synthesis in the brain-stem auditory system of the chick requires synaptic activation. The Journal of Neuroscience, 9(8), 2835–2845.PubMedGoogle Scholar
  50. Irie, T., & Ohmori, H. (2008). Presynaptic GABA(B) receptors modulate synaptic facilitation and depression at distinct synapses in fusiform cells of mouse dorsal cochlear nucleus. Biochemical and Biophysical Research Communications, 367(2), 503–508.PubMedCrossRefGoogle Scholar
  51. Isaacson, J. S., & Walmsley, B. (1996). Amplitude and time course of spontaneous and evoked excitatory postsynaptic currents in bushy cells of the anteroventral cochlear nucleus. Journal of Neurophysiology, 76(3), 1566–1571.PubMedGoogle Scholar
  52. Juiz, J. M., Albin, R. L., Helfert, R. H., & Altschuler, R. A. (1994). Distribution of GABAA and GABAB binding sites in the cochlear nucleus of the guinea pig. Brain Research, 639(2), 193–201.PubMedCrossRefGoogle Scholar
  53. Kalmbach, A., Kullmann, P. H., & Kandler, K. (2010). NMDAR-mediated calcium transients elicited by glutamate co-release at developing inhibitory synapses. Frontiers in Synaptic Neuroscience, 2, 27.PubMedPubMedCentralGoogle Scholar
  54. Kandler, K., & Friauf, E. (1995). Development of glycinergic and glutamatergic synaptic transmission in the auditory brainstem of perinatal rats. The Journal of Neuroscience, 15(10), 6890–6904.PubMedGoogle Scholar
  55. Kandler, K., & Gillespie, D. C. (2005). Developmental refinement of inhibitory sound-localization circuits. Trends in Neuroscience, 28(6), 290–296.CrossRefGoogle Scholar
  56. Kantamneni, S. (2015). Cross-talk and regulation between glutamate and GABAB receptors. Frontiers in Cellular Neuroscience, 9, 135.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kato, B. M., & Rubel, E. W. (1999). Glutamate regulates IP3-type and CICR stores in the avian cochlear nucleus. Journal of Neurophysiology, 81(4), 1587–1596.PubMedGoogle Scholar
  58. Kato, B. M., Lachica, E. A., & Rubel, E. W. (1996). Glutamate modulates intracellular Ca2+ stores in brain stem auditory neurons. Journal of Neurophysiology, 76(1), 646–650.PubMedGoogle Scholar
  59. Kim, S. J., Kim, Y. S., Yuan, J. P., Petralia, R. S., et al. (2003). Activation of the TRPC1 cation channel by metabotropic glutamate receptor mGluR1. Nature, 426(6964), 285–291.PubMedCrossRefGoogle Scholar
  60. Kopp-Scheinpflug, C., Steinert, J. R., & Forsythe, I. D. (2011). Modulation and control of synaptic transmission across the MNTB. Hearing Research, 279(1–2), 22–31.PubMedCrossRefGoogle Scholar
  61. Kotak, V. C., & Sanes, D. H. (1995). Synaptically evoked prolonged depolarizations in the developing auditory system. Journal of Neurophysiology, 74(4), 1611–1620.PubMedGoogle Scholar
  62. Kotak, V. C., & Sanes, D. H. (1997). Deafferentation weakens excitatory synapses in the developing central auditory system. European Journal of Neuroscience, 9(11), 2340–2347.PubMedCrossRefGoogle Scholar
  63. Kuba, H., Koyano, K., & Ohmori, H. (2002). Synaptic depression improves coincidence detection in the nucleus laminaris in brainstem slices of the chick embryo. European Journal of Neuroscience, 15(6), 984–990.PubMedCrossRefGoogle Scholar
  64. Kuba, H., Oichi, Y., & Ohmori, H. (2010). Presynaptic activity regulates Na(+) channel distribution at the axon initial segment. Nature, 465(7301), 1075–1078.PubMedCrossRefGoogle Scholar
  65. Kushmerick, C., Price, G. D., Taschenberger, H., Puente, N., et al. (2004). Retroinhibition of presynaptic Ca2+ currents by endocannabinoids released via postsynaptic mGluR activation at a calyx synapse. The Journal of Neuroscience, 24(26), 5955–5965.PubMedCrossRefGoogle Scholar
  66. Lachica, E. A., Rubsamen, R., Zirpel, L., & Rubel, E. W. (1995). Glutamatergic inhibition of voltage-operated calcium channels in the avian cochlear nucleus. The Journal of Neuroscience, 15(3 Pt 1), 1724–1734.PubMedGoogle Scholar
  67. Lachica, E. A., Kato, B. M., Lippe, W. R., & Rubel, E. W. (1998). Glutamatergic and GABAergic agonists increase [Ca2+]i in avian cochlear nucleus neurons. Journal of Neurobiology, 37(2), 321–337.PubMedCrossRefGoogle Scholar
  68. Levi-Montalcini, R. (1949). The development to the acoustico-vestibular centers in the chick embryo in the absence of the afferent root fibers and of descending fiber tracts. The Journal of Comparative Neurology, 91(2), 209–241.PubMedCrossRefGoogle Scholar
  69. Lu, T., & Trussell, L. O. (2007). Development and elimination of endbulb synapses in the chick cochlear nucleus. The Journal of Neuroscience, 27(4), 808–817.PubMedCrossRefGoogle Scholar
  70. Lu, Y. (2014). Metabotropic glutamate receptors in auditory processing. Neuroscience, 274, 429–445.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Lu, Y., & Rubel, E. W. (2005). Activation of metabotropic glutamate receptors inhibits high-voltage-gated calcium channel currents of chicken nucleus magnocellularis neurons. Journal of Neurophysiology, 93(3), 1418–1428.PubMedCrossRefGoogle Scholar
  72. Lu, Y., Harris, J. A., & Rubel, E. W. (2007). Development of spontaneous miniature EPSCs in mouse AVCN neurons during a critical period of afferent-dependent neuron survival. Journal of Neurophysiology, 97(1), 635–646.PubMedCrossRefGoogle Scholar
  73. Luscher, C., Nicoll, R. A., Malenka, R. C., & Muller, D. (2000). Synaptic plasticity and dynamic modulation of the postsynaptic membrane. Nature Neuroscience, 3(6), 545–550.PubMedCrossRefGoogle Scholar
  74. Ma, C. L., Kelly, J. B., & Wu, S. H. (2002). AMPA and NMDA receptors mediate synaptic excitation in the rat's inferior colliculus. Hearing Research, 168(1–2), 25–34.PubMedCrossRefGoogle Scholar
  75. Magnusson, A. K., Park, T. J., Pecka, M., Grothe, B., & Koch, U. (2008). Retrograde GABA signaling adjusts sound localization by balancing excitation and inhibition in the brainstem. Neuron, 59(1), 125–137.PubMedCrossRefGoogle Scholar
  76. Malenka, R. C. (1994). Synaptic plasticity in the hippocampus: LTP and LTD. Cell, 78(4), 535–538.PubMedCrossRefGoogle Scholar
  77. Martinez-Galan, J. R., Perez-Martinez, F. C., & Juiz, J. M. (2012). Signalling routes and developmental regulation of group I metabotropic glutamate receptors in rat auditory midbrain neurons. Journal of Neuroscience Research, 90(10), 1913–1923.PubMedCrossRefGoogle Scholar
  78. Mayer, F., Albrecht, O., Dondzillo, A., & Klug, A. (2014). Glycinergic inhibition to the medial nucleus of the trapezoid body shows prominent facilitation and can sustain high levels of ongoing activity. Journal of Neurophysiology, 112(11), 2901–2915.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Nicholas, A. H., & Hyson, R. L. (2004). Group I and II metabotropic glutamate receptors are necessary for the activity-dependent regulation of ribosomes in chick auditory neurons. Brain Research, 1014(1–2), 110–119.PubMedCrossRefGoogle Scholar
  80. Nicoletti, F., Wroblewski, J. T., Novelli, A., Alho, H., et al. (1986). The activation of inositol phospholipid metabolism as a signal-transducing system for excitatory amino acids in primary cultures of cerebellar granule cells. The Journal of Neuroscience, 6(7), 1905–1911.PubMedGoogle Scholar
  81. Nicoletti, F., Bruno, V., Ngomba, R. T., Gradini, R., & Battaglia, G. (2015). Metabotropic glutamate receptors as drug targets: What’s new? Current Opinion in Pharmacology, 20, 89–94.PubMedCrossRefGoogle Scholar
  82. Niedzielski, A. S., & Wenthold, R. J. (1995). Expression of AMPA, kainate, and NMDA receptor subunits in cochlear and vestibular ganglia. The Journal of Neuroscience, 15(3 Pt 2), 2338–2353.PubMedGoogle Scholar
  83. Nishimaki, T., Jang, I. S., Ishibashi, H., Yamaguchi, J., & Nabekura, J. (2007). Reduction of metabotropic glutamate receptor-mediated heterosynaptic inhibition of developing MNTB-LSO inhibitory synapses. European Journal of Neuroscience, 26(2), 323–330.PubMedCrossRefGoogle Scholar
  84. Niswender, C. M., & Conn, P. J. (2010). Metabotropic glutamate receptors: Physiology, pharmacology, and disease. Annual Review of Pharmacology and Toxicology, 50, 295–322.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Okuda, H., Yamada, R., Kuba, H., & Ohmori, H. (2013). Activation of metabotropic glutamate receptors improves the accuracy of coincidence detection by presynaptic mechanisms in the nucleus laminaris of the chick. The Journal of Physiology, 591(Pt 1), 365–378.PubMedCrossRefGoogle Scholar
  86. Oleskevich, S., & Walmsley, B. (2002). Synaptic transmission in the auditory brainstem of normal and congenitally deaf mice. The Journal of Physiology, 540(Pt 2), 447–455.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Oleskevich, S., Youssoufian, M., & Walmsley, B. (2004). Presynaptic plasticity at two giant auditory synapses in normal and deaf mice. The Journal of Physiology, 560(Pt 3), 709–719.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Otis, T. S., & Trussell, L. O. (1996). Inhibition of transmitter release shortens the duration of the excitatory synaptic current at a calyceal synapse. Journal of Neurophysiology, 76(5), 3584–3588.PubMedGoogle Scholar
  89. Otis, T. S., Raman, I. M., & Trussell, L. O. (1995). AMPA receptors with high Ca2+ permeability mediate synaptic transmission in the avian auditory pathway. The Journal of Physiology, 482 (Pt 2), 309–315.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Paoletti, P., Bellone, C., & Zhou, Q. (2013). NMDA receptor subunit diversity: Impact on receptor properties, synaptic plasticity and disease. Nature Reviews Neuroscience, 14(6), 383–400.PubMedCrossRefGoogle Scholar
  91. Parks, T. N. (2000). The AMPA receptors of auditory neurons. Hearing Research, 147(1–2), 77–91.PubMedCrossRefGoogle Scholar
  92. Petralia, R. S., Wang, Y. X., Mayat, E., & Wenthold, R. J. (1997). Glutamate receptor subunit 2-selective antibody shows a differential distribution of calcium-impermeable AMPA receptors among populations of neurons. The Journal of Comparative Neurology, 385(3), 456–476.PubMedCrossRefGoogle Scholar
  93. Petralia, R. S., Rubio, M. E., Wang, Y. X., & Wenthold, R. J. (2000). Differential distribution of glutamate receptors in the cochlear nuclei. Hearing Research, 147(1–2), 59–69.PubMedCrossRefGoogle Scholar
  94. Pliss, L., Yang, H., & Xu-Friedman, M. A. (2009). Context-dependent effects of NMDA receptors on precise timing information at the endbulb of Held in the cochlear nucleus. Journal of Neurophysiology, 102(5), 2627–2637.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Raman, I. M., Zhang, S., & Trussell, L. O. (1994). Pathway-specific variants of AMPA receptors and their contribution to neuronal signaling. The Journal of Neuroscience, 14(8), 4998–5010.PubMedGoogle Scholar
  96. Ravindranathan, A., Parks, T. N., & Rao, M. S. (1997). New isoforms of the chick glutamate receptor subunit GluR4: Molecular cloning, regional expression and developmental analysis. Brain Research Molecular Brain Research, 50(1–2), 143–153.PubMedCrossRefGoogle Scholar
  97. Ravindranathan, A., Donevan, S. D., Sugden, S. G., Greig, A., et al. (2000). Contrasting molecular composition and channel properties of AMPA receptors on chick auditory and brainstem motor neurons. The Journal of Physiology, 523(Pt 3), 667–684.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Rondard, P., & Pin, J. P. (2015). Dynamics and modulation of metabotropic glutamate receptors. Current Opinion in Pharmacology, 20, 95–101.PubMedCrossRefGoogle Scholar
  99. Rubel, E. W., & Fritzsch, B. (2002). Auditory system development: Primary auditory neurons and their targets. Annual Review of Neuroscience, 25, 51–101.PubMedCrossRefGoogle Scholar
  100. Sahley, T. L., Hammonds, M. D., & Musiek, F. E. (2013). Endogenous dynorphins, glutamate and N-methyl-d-aspartate (NMDA) receptors may participate in a stress-mediated type-I auditory neural exacerbation of tinnitus. Brain Research, 1499, 80–108.PubMedCrossRefGoogle Scholar
  101. Sanchez, J. T., Gans, D., & Wenstrup, J. J. (2007). Contribution of NMDA and AMPA receptors to temporal patterning of auditory responses in the inferior colliculus. The Journal of Neuroscience, 27(8), 1954–1963.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Sanchez, J. T., Wang, Y., Rubel, E. W., & Barria, A. (2010). Development of glutamatergic synaptic transmission in binaural auditory neurons. Journal of Neurophysiology, 104(3), 1774–1789.PubMedCrossRefGoogle Scholar
  103. Sanchez, J. T., Seidl, A. H., Rubel, E. W., & Barria, A. (2012). Control of neuronal excitability by NMDA-type glutamate receptors in early developing binaural auditory neurons. The Journal of Physiology, 590(Pt 19), 4801–4818.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Sanchez, J. T., Ghelani, S., & Otto-Meyer, S. (2015). From development to disease: Diverse functions of NMDA-type glutamate receptors in the lower auditory pathway. Neuroscience, 285, 248–259.PubMedCrossRefGoogle Scholar
  105. Sanes, D. H., McGee, J., & Walsh, E. J. (1998). Metabotropic glutamate receptor activation modulates sound level processing in the cochlear nucleus. Journal of Neurophysiology, 80(1), 209–217.PubMedGoogle Scholar
  106. Sanz-Clemente, A., Nicoll, R. A., & Roche, K. W. (2013). Diversity in NMDA receptor composition: Many regulators, many consequences. Neuroscientist, 19(1), 62–75.PubMedCrossRefGoogle Scholar
  107. Schneggenburger, R., Sakaba, T., & Neher, E. (2002). Vesicle pools and short-term synaptic depression: Lessons from a large synapse. Trends in Neuroscience, 25(4), 206–212.CrossRefGoogle Scholar
  108. Shore, S. E. (2011). Plasticity of somatosensory inputs to the cochlear nucleus: Implications for tinnitus. Hearing Research, 281(1–2), 38–46.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Sladeczek, F., Pin, J. P., Recasens, M., Bockaert, J., & Weiss, S. (1985). Glutamate stimulates inositol phosphate formation in striatal neurones. Nature, 317(6039), 717–719.PubMedCrossRefGoogle Scholar
  110. Stange, A., Myoga, M. H., Lingner, A., Ford, M. C., et al. (2013). Adaptation in sound localization: From GABA(B) receptor-mediated synaptic modulation to perception. Nature Neuroscience, 16(12), 1840–1847.PubMedCrossRefGoogle Scholar
  111. Steinert, J. R., Postlethwaite, M., Jordan, M. D., Chernova, T., et al. (2010). NMDAR-mediated EPSCs are maintained and accelerate in time course during maturation of mouse and rat auditory brainstem in vitro. The Journal of Physiology, 588(Pt 3), 447–463.PubMedCrossRefGoogle Scholar
  112. Stincic, T. L., & Hyson, R. L. (2011). The localization and physiological effects of cannabinoid receptor 1 in the brain stem auditory system of the chick. Neuroscience, 194, 150–159.PubMedCrossRefGoogle Scholar
  113. Sun, H., Ma, C. L., Kelly, J. B., & Wu, S. H. (2006). GABAB receptor-mediated presynaptic inhibition of glutamatergic transmission in the inferior colliculus. Neuroscience Letters, 399(1–2), 151–156.PubMedCrossRefGoogle Scholar
  114. Takahashi, T., Forsythe, I. D., Tsujimoto, T., Barnes-Davies, M., & Onodera, K. (1996). Presynaptic calcium current modulation by a metabotropic glutamate receptor. Science, 274(5287), 594–597.PubMedCrossRefGoogle Scholar
  115. Tang, Y. Z., & Carr, C. E. (2004). Development of NMDA R1 expression in chicken auditory brainstem. Hearing Research, 191(1–2), 79–89.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Tang, Y. Z., & Carr, C. E. (2007). Development of N-methyl-d-aspartate receptor subunits in avian auditory brainstem. The Journal of Comparative Neurology, 502(3), 400–413.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Tang, Z. Q., Liu, Y. W., Shi, W., Dinh, E. H., et al. (2013). Activation of synaptic group II metabotropic glutamate receptors induces long-term depression at GABAergic synapses in CNS neurons. The Journal Neuroscience, 33(40), 15964–15977.CrossRefGoogle Scholar
  118. Tomita, S., Chen, L., Kawasaki, Y., Petralia, R. S., et al. (2003). Functional studies and distribution define a family of transmembrane AMPA receptor regulatory proteins. The Journal of Cell Biology, 161(4), 805–816.PubMedPubMedCentralCrossRefGoogle Scholar
  119. Traynelis, S. F., Wollmuth, L. P., McBain, C. J., Menniti, F. S., et al. (2010). Glutamate receptor ion channels: structure, regulation, and function. Pharmacology Review, 62(3), 405–496.CrossRefGoogle Scholar
  120. Trussell, L. (1998). Control of time course of glutamatergic synaptic currents. Progress in Brain Research, 116, 59–69.PubMedCrossRefGoogle Scholar
  121. Trussell, L. O. (1999). Synaptic mechanisms for coding timing in auditory neurons. Annual Review of Physiology, 61, 477–496.PubMedCrossRefGoogle Scholar
  122. Trussell, L. O. (2002). Transmission at the hair cell synapse. Nature Neuroscience, 5(2), 85–86.PubMedCrossRefGoogle Scholar
  123. Trussell, L. O., & Fischbach, G. D. (1989). Glutamate receptor desensitization and its role in synaptic transmission. Neuron, 3(2), 209–218.PubMedCrossRefGoogle Scholar
  124. Turecek, R., & Trussell, L. O. (2001). Presynaptic glycine receptors enhance transmitter release at a mammalian central synapse. Nature, 411(6837), 587–590.PubMedCrossRefGoogle Scholar
  125. Tzounopoulos, T. (2008). Mechanisms of synaptic plasticity in the dorsal cochlear nucleus: plasticity-induced changes that could underlie tinnitus. American Journal of Audiology, 17(2), S170–175.PubMedPubMedCentralCrossRefGoogle Scholar
  126. Tzounopoulos, T., Kim, Y., Oertel, D., & Trussell, L. O. (2004). Cell-specific, spike timing-dependent plasticities in the dorsal cochlear nucleus. Nature Neuroscience, 7(7), 719–725.PubMedCrossRefGoogle Scholar
  127. Vale, C., & Sanes, D. H. (2002). The effect of bilateral deafness on excitatory and inhibitory synaptic strength in the inferior colliculus. European Journal of Neuroscience, 16(12), 2394–2404.PubMedCrossRefGoogle Scholar
  128. Voytenko, S. V., & Galazyuk, A. V. (2011). mGluRs modulate neuronal firing in the auditory midbrain. Neuroscience Letters, 492(3), 145–149.PubMedCrossRefGoogle Scholar
  129. Walmsley, B., Berntson, A., Leao, R. N., & Fyffe, R. E. (2006). Activity-dependent regulation of synaptic strength and neuronal excitability in central auditory pathways. The Journal of Physiology, 572(Pt 2), 313–321.PubMedPubMedCentralCrossRefGoogle Scholar
  130. Wang, L. C., Tang, Z. Q., & Lu, Y. (2012). Synaptic activity-induced Ca(2+) signaling in avian cochlear nucleus magnocellularis neurons. Neuroscience Reseatch, 72(2), 129–139.CrossRefGoogle Scholar
  131. Wang, Y., Cunningham, D. E., Tempel, B. L., & Rubel, E. W. (2009). Compartment-specific regulation of plasma membrane calcium ATPase type 2 in the chick auditory brainstem. The Journal of Comparative Neurology, 514(6), 624–640.PubMedPubMedCentralCrossRefGoogle Scholar
  132. Wenzel, A., Villa, M., Mohler, H., & Benke, D. (1996). Developmental and regional expression of NMDA receptor subtypes containing the NR2D subunit in rat brain. Journal of Neurochemistry, 66(3), 1240–1248.PubMedCrossRefGoogle Scholar
  133. Wong, A. Y., Billups, B., Johnston, J., Evans, R. J., & Forsythe, I. D. (2006). Endogenous activation of adenosine A1 receptors, but not P2X receptors, during high-frequency synaptic transmission at the calyx of Held. Journal of Neurophysiology, 95(6), 3336–3342.PubMedCrossRefGoogle Scholar
  134. Wu, S. H., & Fu, X. W. (1998). Glutamate receptors underlying excitatory synaptic transmission in the rat's lateral superior olive studied in vitro. Hearing Research, 122(1–2), 47–59.PubMedCrossRefGoogle Scholar
  135. Wu, S. H., Ma, C. L., Sivaramakrishnan, S., & Oliver, D. L. (2002). Synaptic modification in neurons of the central nucleus of the inferior colliculus. Hearing Research, 168(1–2), 43–54.PubMedCrossRefGoogle Scholar
  136. Xu-Friedman, M. A., & Regehr, W. G. (2004). Structural contributions to short-term synaptic plasticity. Physiological Reviews, 84(1), 69–85.PubMedCrossRefGoogle Scholar
  137. Yang, Y. M., Aitoubah, J., Lauer, A. M., Nuriya, M., et al. (2011). GluA4 is indispensable for driving fast neurotransmission across a high-fidelity central synapse. The Journal of Physiology, 589(Pt 17), 4209–4227.PubMedPubMedCentralCrossRefGoogle Scholar
  138. Youssoufian, M., Oleskevich, S., & Walmsley, B. (2005). Development of a robust central auditory synapse in congenital deafness. Journal of Neurophysiology, 94(5), 3168–3180.PubMedCrossRefGoogle Scholar
  139. Zhang, H., & Kelly, J. B. (2001). AMPA and NMDA receptors regulate responses of neurons in the rat's inferior colliculus. Journal of Neurophysiology, 86(2), 871–880.PubMedGoogle Scholar
  140. Zhang, S., & Trussell, L. O. (1994). Voltage clamp analysis of excitatory synaptic transmission in the avian nucleus magnocellularis. The Journal of Physiology, 480(Pt 1), 123–136.PubMedPubMedCentralCrossRefGoogle Scholar
  141. Zirpel, L., & Parks, T. N. (2001). Zinc inhibition of group I mGluR-mediated calcium homeostasis in auditory neurons. Journal of the Association of Research in Otolaryngology, 2(2), 180–187.CrossRefGoogle Scholar
  142. Zirpel, L., & Rubel, E. W. (1996). Eighth nerve activity regulates intracellular calcium concentration of avian cochlear nucleus neurons via a metabotropic glutamate receptor. Journal of Neurophysiology, 76(6), 4127–4139.PubMedGoogle Scholar
  143. Zirpel, L., Nathanson, N. M., Rubel, E. W., & Hyson, R. L. (1994). Glutamate-stimulated phosphatidylinositol metabolism in the avian cochlear nucleus. Neuroscience Letters, 168(1–2), 163–166.PubMedCrossRefGoogle Scholar
  144. Zirpel, L., Lachica, E. A., & Rubel, E. W. (1995). Activation of a metabotropic glutamate receptor increases intracellular calcium concentrations in neurons of the avian cochlear nucleus. The Journal of Neuroscience, 15(1 Pt 1), 214–222.PubMedGoogle Scholar
  145. Zirpel, L., Lippe, W. R., & Rubel, E. W. (1998). Activity-dependent regulation of [Ca2+]i in avian cochlear nucleus neurons: Roles of protein kinases A and C and relation to cell death. Journal of Neurophysiolology, 79(5), 2288–2302.Google Scholar
  146. Zirpel, L., Janowiak, M. A., Taylor, D. A., & Parks, T. N. (2000). Developmental changes in metabotropic glutamate receptor-mediated calcium homeostasis. The Journal of Comparative Neurology, 421(1), 95–106.PubMedCrossRefGoogle Scholar
  147. Zucker, R. S., & Regehr, W. G. (2002). Short-term synaptic plasticity. Annual Review in Physiology, 64, 355–405.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, The Hugh Knowles Hearing Research Center, and Department of Neurobiology and the Interdepartmental Neuroscience ProgramNorthwestern UniversityEvanstonUSA
  2. 2.Department of Anatomy and NeurobiologyNortheast Ohio Medical UniversityRootstownUSA

Personalised recommendations