Skip to main content

The Molecular and Cellular Mechanisms of Zebrafish Lateral Line Development

  • Chapter
  • First Online:
Auditory Development and Plasticity

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 64))

Abstract

In aquatic vertebrates, the lateral line mechanosensory system allows for sensation of changes in water current and mediates such behaviors as schooling, predator avoidance, and mating. The lateral line forms from placodes that arise just rostral and caudal to the otic placode. Shortly after placode formation, groups of cells will delaminate from the placodes and begin migrating either throughout the head or down the trunk of the developing embryo. These migratory groups of cells are known as the sensory ridges (head) and posterior lateral line primordium (trunk). During migration, they deposit cell clusters containing hair cell precursors. Shortly after deposition, these clusters will differentiate into mechanosensory organs called neuromasts. In larvae and adults, the lateral line system continues to elaborate; this is accomplished through a differentiation of latent precursors (larvae) as well as a cellular budding process (larvae and adults), resulting in strings of neuromasts that populate the body of aquatic vertebrates. The zebrafish (Danio rerio) has emerged as an exquisite model to study the formation and function of the lateral line system. This chapter describes the development of the zebrafish lateral line and the associated axonal innervations that make up the mechanosensory system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahrens, K., & Schlosser, G. (2005). Tissues and signals involved in the induction of placodal Six1 expression in Xenopus laevis. Developmental Biology, 288(1), 40–59.

    Article  CAS  PubMed  Google Scholar 

  • Alexandre, D., & Ghysen, A. (1999). Somatotopy of the lateral line projection in larval zebrafish. Proceedings of the National Academy of Sciences of the USA, 96(13), 7558–7562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aman, A., & Piotrowski, T. (2008). Wnt/beta-catenin and Fgf signaling control collective cell migration by restricting chemokine receptor expression. Developmental Cell, 15(5), 749–761.

    Article  CAS  PubMed  Google Scholar 

  • Aman, A., & Piotrowski, T. (2011). Cell–cell signaling interactions coordinate multiple cell behaviors that drive morphogenesis of the lateral line. Cell Adhesion and Migration, 5(6), 499–508.

    Article  PubMed  PubMed Central  Google Scholar 

  • Aman, A., Nguyen, M., & Piotrowski, T. (2010). Wnt/β-catenin dependent cell proliferation underlies segmented lateral line morphogenesis. Developmental Biology, doi:10.1016/j.ydbio.2010.10.022.

  • Aman, A., Nguyen, M., & Piotrowski, T. (2011). Wnt/beta-catenin dependent cell proliferation underlies segmented lateral line morphogenesis. Developmental Biology, 349(2), 470–482.

    Article  CAS  PubMed  Google Scholar 

  • Andermann, P., Ungos, J., & Raible, D. W. (2002). Neurogenin1 defines zebrafish cranial sensory ganglia precursors. Developmental Biology, 251(1), 45–58.

    Article  CAS  PubMed  Google Scholar 

  • Becker, T., Becker, C. G., Schachner, M., & Bernhardt, R. R. (2001). Antibody to the HNK-1 glycoepitope affects fasciculation and axonal pathfinding in the developing posterior lateral line nerve of embryonic zebrafish. Mechanisms of Development, 109(1), 37–49.

    Article  CAS  PubMed  Google Scholar 

  • Bleckmann, H. (1993). Role of the lateral line and fish behavior. In T. J. Pitcher (ed.), Behaviour of Teleost Fishes, 2nd ed. (pp. 201–246). New York: Springer.

    Google Scholar 

  • Bricaud, O., Chaar, V., Dambly-Chaudiere, C., & Ghysen, A. (2001). Early efferent innervation of the zebrafish lateral line. The Journal of Comparative Neurology, 434(3), 253–261.

    Article  CAS  PubMed  Google Scholar 

  • Brosamle, C., & Halpern, M. E. (2009). Nogo-Nogo receptor signalling in PNS axon outgrowth and pathfinding. Molecular and Cellular Neuroscience, 40(4), 401–409.

    Article  CAS  PubMed  Google Scholar 

  • Bussmann, J., & Raz, E. (2015). Chemokine-guided cell migration and motility in zebrafish development. The EMBO Journal, 34(10), 1309–1318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole, G. J., & Schachner, M. (1987). Localization of the L2 monoclonal antibody binding site on chicken neural cell adhesion molecule (NCAM) and evidence for its role in NCAM-mediated cell adhesion. Neuroscience Letters, 78(2), 227–232.

    Article  CAS  PubMed  Google Scholar 

  • Dalle Nogare, D., Somers, K., Rao, S., Matsuda, M., et al.(2014). Leading and trailing cells cooperate in collective migration of the zebrafish posterior lateral line primordium. Development, 141(16), 3188–3196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • David, N. B., Sapede, D., Saint-Etienne, L., Thisse, C., et al. (2002). Molecular basis of cell migration in the fish lateral line: Role of the chemokine receptor CXCR4 and of its ligand, SDF1. Proceedings of the National Academy of Sciences of the USA, 99(25), 16297–16302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dona, E., Barry, J. D., Valentin, G., Quirin, C., et al. (2013). Directional tissue migration through a self-generated chemokine gradient. Nature, 503(7475), 285–289.

    CAS  PubMed  Google Scholar 

  • Dorsky, R. I., Moon, R. T., & Raible, D. W. (2000). Environmental signals and cell fate specification in premigratory neural crest. Bioessays, 22(8), 708–716.

    Article  CAS  PubMed  Google Scholar 

  • Dow, E., Siletti, K., & Hudspeth, A. J. (2015). Cellular projections from sensory hair cells form polarity-specific scaffolds during synaptogenesis. Genes and Development, 29(10), 1087–1094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drerup, C. M., & Nechiporuk, A. V. (2013). JNK-interacting protein 3 mediates the retrograde transport of activated c-Jun N-terminal kinase and lysosomes. PLoS Genetics, doi:10.1371/journal.pgen.1003303.

  • Durdu, S., Iskar, M., Revenu, C., Schieber, N., et al. (2014). Luminal signalling links cell communication to tissue architecture during organogenesis. Nature, 515(7525), 120–124.

    Article  CAS  PubMed  Google Scholar 

  • Eaton, R. C., DiDomenico, R., & Nissanov, J. (1988). Flexible body dynamics of the goldfish C-start: Implications for reticulospinal command mechanisms. The Journal of Neuroscience, 8(8), 2758–2768.

    CAS  PubMed  Google Scholar 

  • Ernst, S., Liu, K., Agarwala, S., Moratscheck, N., et al. (2012). Shroom3 is required downstream of FGF signalling to mediate proneuromast assembly in zebrafish. Development, 139(24), 4571–4581.

    Article  CAS  PubMed  Google Scholar 

  • Faucherre, A., Pujol-Marti, J., Kawakami, K., & Lopez-Schier, H. (2009). Afferent neurons of the zebrafish lateral line are strict selectors of hair-cell orientation. PLoS ONE, doi:10.1371/journal.pone.0004477.

  • Freter, S., Muta, Y., Mak, S. S., Rinkwitz, S., & Ladher, R. K. (2008). Progressive restriction of otic fate: The role of FGF and Wnt in resolving inner ear potential. Development, 135(20), 3415–3424.

    Article  CAS  PubMed  Google Scholar 

  • Friedl, P., & Gilmour, D. (2009). Collective cell migration in morphogenesis, regeneration and cancer. Nature Review of Molecular Cell Biology, 10(7), 445–457.

    Article  CAS  Google Scholar 

  • Germana, A., Laura, R., Montalbano, G., Guerrera, M. C., et al. (2010). Expression of brain-derived neurotrophic factor and TrkB in the lateral line system of zebrafish during development. Cellular and Molecular Neurobioloy, 30(5), 787–793.

    Article  CAS  Google Scholar 

  • Ghysen, A., & Dambly-Chaudiere, C. (2004). Development of the zebrafish lateral line. Current Opinion in Neurobiology, 14(1), 67–73.

    Article  CAS  PubMed  Google Scholar 

  • Ghysen, A., & Dambly-Chaudiere, C. (2007). The lateral line microcosmos. Genes and Development, 21(17), 2118–2130.

    Article  CAS  PubMed  Google Scholar 

  • Gilmour, D., Knaut, H., Maischein, H. M., & Nusslein-Volhard, C. (2004). Towing of sensory axons by their migrating target cells in vivo. Nature Neuroscience, 7(5), 491–492.

    Article  CAS  PubMed  Google Scholar 

  • Gompel, N., Dambly-Chaudiere, C., & Ghysen, A. (2001). Neuronal differences prefigure somatotopy in the zebrafish lateral line. Development, 128(3), 387–393.

    CAS  PubMed  Google Scholar 

  • Grant, K. A., Raible, D. W., & Piotrowski, T. (2005). Regulation of latent sensory hair cell precursors by glia in the zebrafish lateral line. Neuron, 45(1), 69–80.

    Article  CAS  PubMed  Google Scholar 

  • Haas, P., & Gilmour, D. (2006). Chemokine signaling mediates self-organizing tissue migration in the zebrafish lateral line. Developmental Cell, 10(5), 673–680.

    Article  CAS  PubMed  Google Scholar 

  • Hans, S., Christison, J., Liu, D., & Westerfield, M. (2007). Fgf-dependent otic induction requires competence provided by Foxi1 and Dlx3b. BMC Developmental Biology, doi:10.1186/1471-213X-7-5.

  • Hans, S., Irmscher, A., & Brand, M. (2013). Zebrafish Foxi1 provides a neuronal ground state during inner ear induction preceding the Dlx3b/4b-regulated sensory lineage. Development, 140(9), 1936–1945.

    Article  CAS  PubMed  Google Scholar 

  • Harding, M. J., & Nechiporuk, A. V. (2012). Fgfr-Ras-MAPK signaling is required for apical constriction via apical positioning of Rho-associated kinase during mechanosensory organ formation. Development, 139(17), 3130–3135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harding, M. J., McGraw, H. F., & Nechiporuk, A. (2014). The roles and regulation of multicellular rosette structures during morphogenesis. Development, 141(13), 2549–2558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh, M., & Chitnis, A. B. (2001). Expression of proneural and neurogenic genes in the zebrafish lateral line primordium correlates with selection of hair cell fate in neuromasts. Mechanisms of Development, 102(1–2), 263–266.

    Article  CAS  PubMed  Google Scholar 

  • Janesick, A., Shiotsugu, J., Taketani, M., & Blumberg, B. (2012). RIPPLY3 is a retinoic acid-inducible repressor required for setting the borders of the pre-placodal ectoderm. Development, 139(6), 1213–1224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kindt, K. S., Finch, G., & Nicolson, T. (2012). Kinocilia mediate mechanosensitivity in developing zebrafish hair cells. Developmental Cell, 23(2), 329–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laguerre, L., Ghysen, A., & Dambly-Chaudiere, C. (2009). Mitotic patterns in the migrating lateral line cells of zebrafish embryos. Developmental Dynamics, 238(5), 1042–1051.

    Article  PubMed  Google Scholar 

  • Lecaudey, V., Cakan-Akdogan, G., Norton, W. H., & Gilmour, D. (2008). Dynamic Fgf signaling couples morphogenesis and migration in the zebrafish lateral line primordium. Development, 135(16), 2695–2705.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S. A., Shen, E. L., Fiser, A., Sali, A., & Guo, S. (2003). The zebrafish forkhead transcription factor Foxi1 specifies epibranchial placode-derived sensory neurons. Development, 130(12), 2669–2679.

    Article  CAS  PubMed  Google Scholar 

  • Litsiou, A., Hanson, S., & Streit, A. (2005). A balance of FGF, BMP and WNT signalling positions the future placode territory in the head. Development, 132(18), 4051–4062

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Schier, H., & Hudspeth, A. J. (2006). A two-step mechanism underlies the planar polarization of regenerating sensory hair cells. Proceedings of the National Academy of Sciences of the USA, 103(49), 18615–18620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lush, M. E., & Piotrowski, T. (2014). Sensory hair cell regeneration in the zebrafish lateral line. Developmental Dynamics, 243(10), 1187–1202.

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin, S. C., Marazzi, G., Sandell, J. H., & Heinrich, G. (1995). Five Trk receptors in the zebrafish. Developmental Biology, 169(2), 745–758.

    Article  CAS  PubMed  Google Scholar 

  • Matsuda, M., & Chitnis, A. B. (2010). Atoh1a expression must be restricted by Notch signaling for effective morphogenesis of the posterior lateral line primordium in zebrafish. Development, 137(20), 3477–3487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuda, M., Nogare, D. D., Somers, K., Martin, K., et al. (2013). Lef1 regulates Dusp6 to influence neuromast formation and spacing in the zebrafish posterior lateral line primordium. Development, 140(11), 2387–2397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matthews, G., & Fuchs, P. (2010). The diverse roles of ribbon synapses in sensory neurotransmission. Nature Reviews of Neuroscience, 11(12), 812–822.

    Article  CAS  PubMed  Google Scholar 

  • McCarroll, M. N., & Nechiporuk, A. V. (2013). Fgf3 and Fgf10a work in concert to promote maturation of the epibranchial placodes in zebrafish. PLoS ONE, 8(12), e85087.

    Article  PubMed  PubMed Central  Google Scholar 

  • McCarroll, M. N., Lewis, Z. R., Culbertson, M. D., Martin, B. L., et al. (2012). Graded levels of Pax2a and Pax8 regulate cell differentiation during sensory placode formation. Development, 139(15), 2740–2750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGraw, H. F., Drerup, C. M., Culbertson, M. D., Linbo, T., et al. (2011). Lef1 is required for progenitor cell identity in the zebrafish lateral line primordium. Development, 138(18), 3921–3930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGraw, H. F., Culbertson, M. D., & Nechiporuk, A. V. (2014). Kremen1 restricts Dkk activity during posterior lateral line development in zebrafish. Development, 141(16), 3212–3221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metcalfe, W. K. (1985). Sensory neuron growth cones comigrate with posterior lateral line primordial cells in zebrafish. The Journal of Comparative Neurology, 238(2), 218–224.

    Article  CAS  PubMed  Google Scholar 

  • Metcalfe, W. K., Kimmel, C. B., & Schabtach, E. (1985). Anatomy of the posterior lateral line system in young larvae of the zebrafish. The Journal of Comparative Neurology, 233(3), 377–389.

    Article  CAS  PubMed  Google Scholar 

  • Metcalfe, W. K., Myers, P. Z., Trevarrow, B., Bass, M. B., & Kimmel, C. B. (1990). Primary neurons that express the L2/HNK-1 carbohydrate during early development in the zebrafish. Development, 110(2), 491–504.

    CAS  PubMed  Google Scholar 

  • Mirkovic, I., Pylawka, S., & Hudspeth, A. J. (2012). Rearrangements between differentiating hair cells coordinate planar polarity and the establishment of mirror symmetry in lateral-line neuromasts. Biology Open, 1(5), 498–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagiel, A., Andor-Ardo, D., & Hudspeth, A. J. (2008). Specificity of afferent synapses onto plane-polarized hair cells in the posterior lateral line of the zebrafish. The Journal of Neuroscience, 28(34), 8442–8453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagiel, A., Patel, S. H., Andor-Ardo, D., & Hudspeth, A. J. (2009). Activity-independent specification of synaptic targets in the posterior lateral line of the larval zebrafish. Proceedings of the National Academy of Sciences of the USA, 106(51), 21948–21953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nechiporuk, A., & Raible, D. W. (2008). FGF-dependent mechanosensory organ patterning in zebrafish. Science, 320(5884), 1774–1777.

    Article  CAS  PubMed  Google Scholar 

  • Nechiporuk, A., Linbo, T., Poss, K. D., & Raible, D. W. (2007). Specification of epibranchial placodes in zebrafish. Development, 134(3), 611–623.

    Article  CAS  PubMed  Google Scholar 

  • Nissen, R. M., Yan, J., Amsterdam, A., Hopkins, N., & Burgess, S. M. (2003). Zebrafish foxi one modulates cellular responses to Fgf signaling required for the integrity of ear and jaw patterning. Development, 130(11), 2543–2554.

    Article  CAS  PubMed  Google Scholar 

  • Nogare DD, Nikaido M, Somers K, Head J, Piotrowski T, Chitnis AB. In toto imaging of the migrating Zebrafish lateral line primordium at single cell resolution. Dev Biol. 2017 Feb 1;422(1):14–23.

    Google Scholar 

  • Northcutt, R. G. (1989). The phylogenetic distribution and innervation of craniate mechanoreceptive lateral lines. In P. G. S. Coombs & H. Münz (Eds.), Mechanosensory lateral line: Neurobiology and evolution (pp. 17–78). New York: Springer.

    Chapter  Google Scholar 

  • Northcutt, R. G. (1997). Evolution of gnathostome lateral line ontogenies. Brain, Behavior and Evolution, 50(1), 25–37.

    Article  CAS  PubMed  Google Scholar 

  • Northcutt, R. G. (2005). Ontogeny of electroreceptors and their neural circuitry. In T. H. Bullock (Ed.), Electroreception (pp. 112–131). New York: Springer Science+Business Media.

    Chapter  Google Scholar 

  • Northcutt, R. G., & Brandle, K. (1995). Development of branchiomeric and lateral line nerves in the axolotl. The Journal of Comparative Neurology, 355(3), 427–454.

    Article  CAS  PubMed  Google Scholar 

  • Northcutt, R. G., Catania, K. C., & Criley, B. B. (1994). Development of lateral line organs in the axolotl. The Journal of Comparative Neurology, 340(4), 480–514.

    Article  CAS  PubMed  Google Scholar 

  • Nunez, V. A., Sarrazin, A. F., Cubedo, N., Allende, M. L., et al. (2009). Postembryonic development of the posterior lateral line in the zebrafish. Evolution & Development, 11(4), 391–404.

    Article  Google Scholar 

  • Obholzer, N., Wolfson, S., Trapani, J. G., Mo, W., et al. (2008). Vesicular glutamate transporter 3 is required for synaptic transmission in zebrafish hair cells. The Journal of Neuroscience, 28(9), 2110–2118.

    Article  CAS  PubMed  Google Scholar 

  • Padanad, M. S., & Riley, B. B. (2011). Pax2/8 proteins coordinate sequential induction of otic and epibranchial placodes through differential regulation of foxi1, sox3 and fgf24. Developmental Biology, 351(1), 90–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker, G. H. (1904). The function of the lateral-line organs in fishes. Bulletin of U.S. Burrow of Fish, 24, 185–207.

    Google Scholar 

  • Pieper, M., Eagleson, G. W., Wosniok, W., & Schlosser, G. (2011). Origin and segregation of cranial placodes in Xenopus laevis. Developmental Biology, 360(2), 257–275.

    Article  CAS  PubMed  Google Scholar 

  • Pujol-Marti, J., Baudoin, J. P., Faucherre, A., Kawakami, K., & Lopez-Schier, H. (2010). Progressive neurogenesis defines lateralis somatotopy. Developmental Dynamics, 239(7), 1919–1930.

    Article  CAS  PubMed  Google Scholar 

  • Pujol-Marti, J., Zecca, A., Baudoin, J. P., Faucherre, A., et al. (2012). Neuronal birth order identifies a dimorphic sensorineural map. The Journal of Neuroscience, 32(9), 2976–2987.

    Article  CAS  PubMed  Google Scholar 

  • Pujol-Marti, J., Faucherre, A., Aziz-Bose, R., Asgharsharghi, A., et al. (2014). Converging axons collectively initiate and maintain synaptic selectivity in a constantly remodeling sensory organ. Current Biology, 24(24), 2968–2974.

    Article  CAS  PubMed  Google Scholar 

  • Revenu, C., Streichan, S., Dona, E., Lecaudey, V., et al. (2014). Quantitative cell polarity imaging defines leader-to-follower transitions during collective migration and the key role of microtubule-dependent adherens junction formation. Development, 141(6), 1282–1291.

    Article  CAS  PubMed  Google Scholar 

  • Sarrazin, A. F., Nunez, V. A., Sapede, D., Tassin, V., et al. (2010). Origin and early development of the posterior lateral line system of zebrafish. The Journal of Neuroscience, 30(24), 8234–8244.

    Article  CAS  PubMed  Google Scholar 

  • Sato, A., Koshida, S., & Takeda, H. (2010). Single-cell analysis of somatotopic map formation in the zebrafish lateral line system. Developmental Dynamics, 239(7), 2058–2065.

    Article  CAS  PubMed  Google Scholar 

  • Schlosser, G. (2002). Development and evolution of lateral line placodes in amphibians I. Development. Zoology, 105(2), 119–146.

    Article  PubMed  Google Scholar 

  • Schuster, K., Dambly-Chaudiere, C., & Ghysen, A. (2010). Glial cell line-derived neurotrophic factor defines the path of developing and regenerating axons in the lateral line system of zebrafish. Proceedings of the National Academy of Sciences of the USA, 107(45), 19531–19536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheets, L., Trapani, J. G., Mo, W., Obholzer, N., & Nicolson, T. (2011). Ribeye is required for presynaptic Ca(V)1.3a channel localization and afferent innervation of sensory hair cells. Development, 138(7), 1309–1319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheets, L., Kindt, K. S., & Nicolson, T. (2012). Presynaptic CaV1.3 channels regulate synaptic ribbon size and are required for synaptic maintenance in sensory hair cells. The Journal of Neuroscience, 32(48), 17273–17286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shepherd, I. T., Pietsch, J., Elworthy, S., Kelsh, R. N., & Raible, D. W. (2004). Roles for GFRalpha1 receptors in zebrafish enteric nervous system development. Development, 131(1), 241–249.

    Article  CAS  PubMed  Google Scholar 

  • Shoji, W., Yee, C. S., & Kuwada, J. Y. (1998). Zebrafish semaphorin Z1a collapses specific growth cones and alters their pathway in vivo. Development, 125(7), 1275–1283.

    CAS  PubMed  Google Scholar 

  • Sidi, S., Busch-Nentwich, E., Friedrich, R., Schoenberger, U., & Nicolson, T. (2004). gemini encodes a zebrafish L-type calcium channel that localizes at sensory hair cell ribbon synapses. The Journal of Neuroscience, 24(17), 4213–4223.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, E. D., Cruz, I. A., Hailey, D. W., & Raible, D. W. (2015). There and back again: development and regeneration of the zebrafish lateral line system. Wiley Interdisciplinary Reviews: Developmental Biology, 4(1), 1–16.

    Article  PubMed  Google Scholar 

  • Trapani, J. G., & Nicolson, T. (2010). Physiological recordings from zebrafish lateral-line hair cells and afferent neurons. Methods Cellular Biology, 100, 219–231.

    Article  CAS  Google Scholar 

  • Valdivia, L. E., Young, R. M., Hawkins, T. A., Stickney, H. L., et al.(2011). Lef1-dependent Wnt/beta-catenin signalling drives the proliferative engine that maintains tissue homeostasis during lateral line development. Development, 138(18), 3931–3941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venero Galanternik, M., Kramer, K. L., & Piotrowski, T. (2015). Heparan sulfate proteoglycans regulate Fgf signaling and cell polarity during collective cell migration. Cell Reports, doi:10.1016/j.celrep.2014.12.043.

  • Wada, H., Ghysen, A., Asakawa, K., Abe, G., et al. (2013). Wnt/Dkk negative feedback regulates sensory organ size in zebrafish. Current Biology, 23(16), 1559–1565.

    Article  CAS  PubMed  Google Scholar 

  • Webb, J. F., & Shirey, J. E. (2003). Postembryonic development of the cranial lateral line canals and neuromasts in zebrafish. Developmental Dynamics, 228(3), 370–385.

    Article  PubMed  Google Scholar 

  • Whitfield, T. T. (2002). Zebrafish as a model for hearing and deafness. Journal of Neurobiology, 53(2), 157–171.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Requirements

Catherine M. Drerup declares no competing financial or ethical interests.

Hillary F. McGraw declares no competing financial or ethical interests.

Alex V. Nechiporuk declares no competing financial or ethical interests.

Teresa Nicolson declares no competing financial or ethical interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex V. Nechiporuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

McGraw, H.F., Drerup, C.M., Nicolson, T., Nechiporuk, A.V. (2017). The Molecular and Cellular Mechanisms of Zebrafish Lateral Line Development. In: Cramer, K., Coffin, A., Fay, R., Popper, A. (eds) Auditory Development and Plasticity. Springer Handbook of Auditory Research, vol 64. Springer, Cham. https://doi.org/10.1007/978-3-319-21530-3_3

Download citation

Publish with us

Policies and ethics