Advertisement

Development and Regeneration of Sensory Hair Cells

  • Matthew W. Kelley
  • Jennifer S. Stone
Chapter
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 64)

Abstract

Hair cells are sensory receptors for hearing and balance, and for detection of water movement in aquatic animals. In mammals, the vast majority of hair cells are formed during embryogenesis and early postnatal development, whereas in other vertebrates hair cells are formed throughout life. Destruction of hair cells is caused by genetic, environmental, or aging factors and results in sensorineural deficits that are irreversible in humans. Research in the 1980s demonstrated that nonmammalian vertebrates fully replace hair cells after damage and recover function, suggesting hair cell regeneration may someday be coaxed in humans as a treatment for some forms of hearing and balance deficits. To facilitate this possibility, subsequent studies explored the molecular and cellular bases of hair cell formation during development and after damage in mature animals. This chapter reviews the findings in each of these areas, describing similarities and differences across species, sensory organs, and age. For instance, while mature mammals have a limited innate ability to regenerate hair cells in the vestibular inner ear, no hair cells are replaced in the cochlea. Further, although the transcription factor (Atoh1) drives cells toward a hair cell fate during development in all types of animals and in nonmammals after damage, it has limited ability to promote hair cell regeneration in mature mammals. Finally, we discuss some of the hurdles that remain, as well as new technologies that may be used to move the field forward.

Keywords

Development Hair cell Inner ear Lateral line Molecular regulation Regeneration Supporting cell 

Abbreviations

Atoh1

Atonal homolog 1

E

Embryonic day

HMG

High mobility group

Lfng

Lunatic fringe

mTOR

Mechanistic target of rapamycin

P

Postnatal day

PI3K

Phosphoinoside-3 kinase

Notes

Acknowledgments

The authors would like to acknowledge Edwin W Rubel as an exceptional mentor, colleague, and friend, and as one of the pioneers in the fields of both inner development and regeneration. The authors would also like to apologize for the many relevant references that were necessarily omitted because of space limitations.

Compliance with Ethics Requirements

Jennifer Stone declares that she has no conflict of interest.

Matthew Kelley declares that he has no conflict of interest.

References

  1. Abrashkin, K. A., Izumikawa, M., Miyazawa, T., Wang, C. H., et al. (2006). The fate of outer hair cells after acoustic or ototoxic insults. Hearing Research, 218(1–2), 20–29.PubMedCrossRefGoogle Scholar
  2. Adler, H. J., Komeda, M., & Raphael, Y. (1997). Further evidence for supporting cell conversion in the damaged avian basilar papilla. International Journal of Developmental Neuroscience, 15(4–5), 375–385.PubMedCrossRefGoogle Scholar
  3. Ahmed, M., Wong, E. Y., Sun, J., Xu, J., et al. (2012a). Eya1–Six1 interaction is sufficient to induce hair cell fate in the cochlea by activating Atoh1 expression in cooperation with Sox2. Developmental Cell, 22, 377–390.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Ahmed, M., Xu, J., & Xu, P.X. (2012b). EYA1 and SIX1 drive the neuronal developmental program in cooperation with the SWI/SNF chromatin-remodeling complex and SOX2 in the mammalian inner ear. Development, 139, 1965–1977.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Appler, J. M., & Goodrich, L. V. (2011). Connecting the ear to the brain: Molecular mechanisms of auditory circuit assembly. Progress in Neurobiology, 93, 488–508.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Atkinson, P. J., Wise, A. K., Flynn, B. O., Nayagam, B. A., & Richardson, R. T. (2014). Hair cell regeneration after ATOH1 gene therapy in the cochlea of profoundly deaf adult guinea pigs. PLoS ONE, 9(7), e102077.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Avallone, B., Porritiello, M., Esposito, D., Mutone, R., et al. (2003). Evidence for hair cell regeneration in the crista ampullaris of the lizard Podarcis sicula. Hearing Research, 178(1–2), 79–88.PubMedCrossRefGoogle Scholar
  8. Baird, R. A., Torres, M. A., & Schuff, N. R. (1993). Hair cell regeneration in the bullfrog vestibular otolith organs following aminoglycoside toxicity. Hearing Research, 65(1–2), 164–174.PubMedCrossRefGoogle Scholar
  9. Baird, R. A., Burton, M. D., Lysakowski, A., Fashena, D. S., & Naeger, R. A. (2000). Hair cell recovery in mitotically blocked cultures of the bullfrog saccule. Proceedings of the National Academy of Sciences of the USA, 97(22),11722–11729.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Balak, K. J., Corwin, J. T., & Jones, J. E. (1990). Regenerated hair cells can originate from supporting cell progeny: Evidence from phototoxicity and laser ablation experiments in the lateral line system. The Journal of Neuroscience, 10(8), 2502–2512.PubMedGoogle Scholar
  11. Bermingham-McDonogh, O., & Rubel, E. W. (2003). Hair cell regeneration: Winging our way towards a sound future. Current Opinion in Neurobiology, 13(1), 119–126.PubMedCrossRefGoogle Scholar
  12. Bermingham, N. A., Hassan, B. A., Price, S. D., Vollrath, M. A., et al. (1999). Math1: An essential gene for the generation of inner ear hair cells. Science, 284,1837–1841.PubMedCrossRefGoogle Scholar
  13. Bermingham-McDonogh, O., Stone, J. S., Reh, T. A., & Rubel, E. W. (2001). FGFR3 expression during development and regeneration of the chick inner ear sensory epithelia. Developmental Biology, 238(2), 247–259.PubMedCrossRefGoogle Scholar
  14. Bok, J., Raft, S., Kong, K. A., Koo, S. K., et al. (2011). Transient retinoic acid signaling confers anterior-posterior polarity to the inner ear. Proceedings of the National Academy of Sciences of the USA, 108, 161–166.PubMedCrossRefGoogle Scholar
  15. Bok, J., Zenczak, C., Hwang, C. H., & Wu, D. K. (2013). Auditory ganglion source of Sonic hedgehog regulates timing of cell cycle exit and differentiation of mammalian cochlear hair cells. Proceedings of the National Academy of Sciences of the USA, 110, 13869–13874.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Brandt, N., Kuhn, S., Munkner, S., Braig, C., et al. (2007). Thyroid hormone deficiency affects postnatal spiking activity and expression of Ca2+ and K+ channels in rodent inner hair cells. The Journal of Neuroscience 27, 3174–3186.PubMedCrossRefGoogle Scholar
  17. Brooker, R., Hozumi, K., & Lewis, J. (2006). Notch ligands with contrasting functions: Jagged1 and Delta1 in the mouse inner ear. Development, 133, 1277–1286.PubMedCrossRefGoogle Scholar
  18. Burns, J. C., & Corwin, J. T. (2014). Responses to cell loss become restricted as the supporting cells in mammalian vestibular organs grow thick junctional actin bands that develop high stability. The Journal of Neuroscience, 34(5), 1998–2011.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Burns, J. C., Yoo, J. J., Atala, A., & Jackson, J. D. (2012). MYC gene delivery to adult mouse utricles stimulates proliferation of postmitotic supporting cells in vitro. PLoS ONE, 7(10), e48704.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bylund, M., Andersson, E., Novitch, B. G., & Muhr, J. (2003). Vertebrate neurogenesis is counteracted by Sox1–3 activity. Nature Neuroscience, 6,1162–1168.PubMedCrossRefGoogle Scholar
  21. Cafaro, J., Lee, G.-S., & Stone, J. S. (2007). Atoh1 expression defines activated progenitors as well as differentiating hair cells during avian hair cell regeneration. Developmental Dynamics, 236, 156–170.PubMedCrossRefGoogle Scholar
  22. Cai, T., Jen, H. I., Kang, H., Klisch, T. J., et al. (2015). Characterization of the transcriptome of nascent hair cells and identification of direct targets of the Atoh1 transcription factor. The Journal of Neuroscience, 35(14), 5870–5883.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chai, R., Kuo, B., Wang, T., Liaw, E. J., et al. (2012). Wnt signaling induces proliferation of sensory precursors in the postnatal mouse cochlea. Proceedings of the National Academy of Sciences of the USA, 109(21), 8167–8172.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Chardin, S., & Romand, R. (1995). Regeneration and mammalian auditory hair cells. Science, 267(5198), 707–711.PubMedCrossRefGoogle Scholar
  25. Chardin, S., & Romand, R. (1997). Factors modulating supernumerary hair cell production in the postnatal rat cochlea in vitro. International Journal of Developmental Neuroscience, 15(4–5), 497–507.PubMedCrossRefGoogle Scholar
  26. Chen, P., & Segil, N. (1999). p27(Kip1) links cell proliferation to morphogenesis in the developing organ of Corti. Development, 126(8), 1581–1590.PubMedGoogle Scholar
  27. Chen, P., Johnson, J. E., Zoghbi, H. Y., & Segil, N. (2002). The role of Math1 in inner ear development: Uncoupling the establishment of the sensory primordium from hair cell fate determination. Development, 129(10), 2495–2505.PubMedGoogle Scholar
  28. Collado, M. S., Thiede, B. R., Baker, W., Askew, C., et al. (2011). The postnatal accumulation of junctional E-cadherin is inversely correlated with the capacity for supporting cells to convert directly into sensory hair cells in mammalian balance organs. The Journal of Neuroscience, 31(33), 11855–11866PubMedPubMedCentralCrossRefGoogle Scholar
  29. Correia, M. J., Rennie, K. J., & Koo, P. (2001). Return of potassium ion channels in regenerated hair cells: Possible pathways and the role of intracellular calcium signaling. Annals of the New York Academy of Sciences, 942, 228–240.PubMedCrossRefGoogle Scholar
  30. Corwin, J. T., & Cotanche, D. A. (1988). Regeneration of sensory hair cells after acoustic trauma. Science, 240(4860), 1772–1774.PubMedCrossRefGoogle Scholar
  31. Costa, A., Sanchez-Guardado, L., Juniat, S., Gale, J. E., et al. (2015). Generation of sensory hair cells by genetic programming with a combination of transcription factors. Development, 142, 1948–1959.PubMedCrossRefGoogle Scholar
  32. Cotanche, D. A. (1987a). Regeneration of hair cell stereociliary bundles in the chick cochlea following severe acoustic trauma. Hearing Research, 30(2–3), 181–195.PubMedCrossRefGoogle Scholar
  33. Cotanche, D. A. (1987b). Regeneration of the tectorial membrane in the chick cochlea following severe acoustic trauma. Hearing Research, 30(2–3), 197–206.PubMedCrossRefGoogle Scholar
  34. Cotanche, D. A., & Corwin, J. T. (1991). Stereociliary bundles reorient during hair cell development and regeneration in the chick cochlea. Hearing Research, 52(2), 379–402.PubMedCrossRefGoogle Scholar
  35. Cotanche, D. A., Messana, E. P., & Ofsie M. S. (1995). Migration of hyaline cells into the chick basilar papilla during severe noise damage. Hearing Research, 91(1–2), 148–159.PubMedCrossRefGoogle Scholar
  36. Cox, B. C., Chai, R., Lenoir, A., Liu, Z., et al. (2014). Spontaneous hair cell regeneration in the neonatal mouse cochlea in vivo. Development, 141(4), 816–829.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Cruz, R. M., Lambert, P. R., & Rubel, E. W. (1987). Light microscopic evidence of hair cell regeneration after gentamicin toxicity in chick cochlea. Archives of Otolaryngology – Head and Neck Surgery, 113(10), 1058–1062.PubMedCrossRefGoogle Scholar
  38. Cruz, I., Kappedal, R., Mackenzie, S. M., Hailey, D. W., et al. (2015). Robust regeneration of adult zebrafish lateral line hair cells reflects continued precursor pool maintenance. Developmental Biology, 402(2), 229–238PubMedPubMedCentralCrossRefGoogle Scholar
  39. Dabdoub, A., Puligilla, C., Jones, J. M., Fritzsch, B., et al. (2008). Sox2 signaling in prosensory domain specification and subsequent hair cell differentiation in the developing cochlea. Proceedings of the National Academy of Sciences of the USA, 105, 18396–18401.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Daudet, N., Gibson, R., Shang, J., Bernard, A., et al. (2009). Notch regulation of progenitor cell behavior in quiescent and regenerating auditory epithelium of mature birds. Developmental Biology, 326, 86–100.PubMedCrossRefGoogle Scholar
  41. Desai, S. S., Zeh, C., & Lysakowski, A. (2005). Comparative morphology of rodent vestibular periphery. I. Saccular and utricular maculae. Journal of Neurophysiology, 93(1), 251–266.PubMedCrossRefGoogle Scholar
  42. Driver, E. C., Pryor, S. P., Hill, P., Turner, J., et al. (2008). Hedgehog signaling regulates sensory cell formation and auditory function in mice and humans. The Journal of Neuroscience, 28, 7350–7358.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Driver, E. C., Sillers, L., Coate, T. M., Rose, M. F., & Kelley, M. W. (2013). The Atoh1-lineage gives rise to hair cells and supporting cells within the mammalian cochlea. Developmental Biology, 376, 86–98.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Duckert, L. G., & Rubel, E. W. (1990). Ultrastructural observations on regenerating hair cells in the chick basilar papilla. Hearing Research, 48(1–2), 161–182.PubMedCrossRefGoogle Scholar
  45. Duckert, L. G., & Rubel, E. W. (1993). Morphological correlates of functional recovery in the chicken inner ear after gentamycin treatment. The Journal of Comparative Neurology, 331(1), 75–96.PubMedCrossRefGoogle Scholar
  46. Dye, B. J., Frank, T. C., Newlands, S. D., & Dickman, J. D. (1999). Distribution and time course of hair cell regeneration in the pigeon utricle. Hearing Research, 133(1–2), 17–26.PubMedCrossRefGoogle Scholar
  47. Erkman, L., McEvilly, R. J., Luo, L., Ryan, A. K., et al. (1996). Role of transcription factors Brn-3.1 and Brn-3.2 in auditory and visual system development. Nature, 381, 603–606.PubMedCrossRefGoogle Scholar
  48. Forge, A., Li, L., Corwin, J. T., & Nevill, G. (1993). Ultrastructural evidence for hair cell regeneration in the mammalian inner ear. Science, 259(5101), 1616–1619.PubMedCrossRefGoogle Scholar
  49. Forge, A., Li, L., & Nevill, G. (1998). Hair cell recovery in the vestibular sensory epithelia of mature guinea pigs. The Journal of Comparative Neurology, 397(1), 69–88.PubMedCrossRefGoogle Scholar
  50. Forrest, D., Erway, L. C., Ng, L., Altschuler, R., & Curran, T. (1996). Thyroid hormone receptor beta is essential for development of auditory function. Nature Genetics, 13, 354–357.PubMedCrossRefGoogle Scholar
  51. Fujioka, M., Tokano, H., Fujioka, K. S., Okano, H., & Edge, A. S. (2011). Generating mouse models of degenerative diseases using Cre/lox-mediated in vivo mosaic cell ablation. The Journal of Clinical Investigation, 121(6), 2462–2469.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Gale, J. E., Meyers, J. R., Periasamy, A., & Corwin, J. T. (2002). Survival of bundleless hair cells and subsequent bundle replacement in the bullfrog’s saccule. Journal of Neurobiology, 50(2), 81–92.PubMedCrossRefGoogle Scholar
  53. Gnedeva, K., & Hudspeth, A. J. (2015). SoxC transcription factors are essential for the development of the inner ear. Proceedings of the National Academy of Sciences of the USA, 112(45), 14066–14071.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Girod, D. A., Duckert, L. G., & Rubel, E. W. (1989). Possible precursors of regenerated hair cells in the avian cochlea following acoustic trauma. Hearing Research, 42(2–3), 175–194.PubMedCrossRefGoogle Scholar
  55. Golub, J. S., Tong, L., Nguyen, T., Hume, C., et al. (2012). Hair cell replacement in adult mouse utricles after targeted ablation of hair cells with diphtheria toxin. The Journal of Neuroscience, 32(43), 15093–15105.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Goodyear, R., & Richardson, G. (1997). Pattern formation in the basilar papilla: Evidence for cell rearrangement. The Journal of Neuroscience, 17(16), 6289–6301.PubMedGoogle Scholar
  57. Gu, R., Montcouquiol, M., Marchionni, M., & Corwin, J. T. (2007). Proliferative responses to growth factors decline rapidly during postnatal maturation of mammalian hair cell epithelia. EJN European Journal of Neuroscience, 25(5), 1363–1372.PubMedCrossRefGoogle Scholar
  58. Harris, J. A., Cheng, A. G., Cunningham, L. L., MacDonald, G., et al. (2003). Neomycin-induced hair cell death and rapid regeneration in the lateral line of zebrafish (Danio rerio). Journal of the Association for Research in Otolaryngology, 4(2), 219–234.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Hashino, E., & Salvi, R. J. (1993). Changing spatial patterns of DNA replication in the noise-damaged chick cochlea. Journal of Cell Science, 105(1), 23–31.PubMedGoogle Scholar
  60. Hawkins, R. D., Bashiardes, S., Helms, C. A., Hu, L., et al. (2003). Gene expression differences in quiescent versus regenerating hair cells of avian sensory epithelia: Implications for human hearing and balance disorders. Human Molecular Genetics, 12(11), 1261–1272.PubMedCrossRefGoogle Scholar
  61. Head, J. R., Gacioch, L., Pennisi, M., & Meyers, J. R. (2013). Activation of canonical Wnt/β-catenin signaling stimulates proliferation in neuromasts in the zebrafish posterior lateral line. Developmental Dynamics, 242(7), 832–846.PubMedCrossRefGoogle Scholar
  62. Hertzano, R., Montcouquiol, M., Rashi-Elkeles, S., Elkon, R., et al. (2004). Transcription profiling of inner ears from Pou4f3(ddl/ddl) identifies Gfi1 as a target of the Pou4f3 deafness gene. Human Molecular Genetics, 13, 2143–2153.PubMedCrossRefGoogle Scholar
  63. Hu, Z., & Corwin, J. T. (2007). Inner ear hair cells produced in vitro by a mesenchymal-to-epithelial transition. Proceedings of the National Academy of Sciences of the USA, 104(42), 16675–16680.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Hu, Z., & Ulfendahl, M. (2013). The potential of stem cells for the restoration of auditory function in humans. Regenerative Medicine, 8(3), 309–318.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Huh, S-H., Warchol, M. E., & Ornitz, D. M. (2015). Cochlear progenitor number is controlled through mesenchymal FGF receptor signaling. Elife, doi:  10.7554/eLife.05921.
  66. Hume, C. R., Kirkegaard, M., & Oesterle, E. C. (2003). ErbB expression: The mouse inner ear and maturation of the mitogenic response to heregulin. Journal of the Association for Research in Otolaryngology, 4(3), 422–443.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Jacques, B. E., Puligilla, C., Weichert, R. M., Ferrer-Vaquer, A., et al. (2012). A dual function for canonical Wnt/beta-catenin signaling in the developing mammalian cochlea. Development, 139, 4395–4404.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Jacques, B. E., Montgomery, W. H. 4th, Uribe, P. M., Yatteau, A., et al. (2014). The role of Wnt/β-catenin signaling in proliferation and regeneration of the developing basilar papilla and lateral line. Developmental Neurobiology, 74(4), 438–456.PubMedCrossRefGoogle Scholar
  69. Jiang, L., Romero-Carvajal, A., Haug, J. S., Seidel, C. W., & Piotrowski, T. (2014). Gene-expression analysis of hair cell regeneration in the zebrafish lateral line. Proceedings of the National Academy of Sciences of the USA, 111(14), E1383–E1392.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Jones, J. E., & Corwin, J. T. (1996). Regeneration of sensory cells after laser ablation in the lateral line system: Hair cell lineage and macrophage behavior revealed by time-lapse video microscopy. The Journal of Neuroscience, 16(2), 649–662.PubMedGoogle Scholar
  71. Jones, J. M., Montcouquiol, M., Dabdoub, A., Woods, C., & Kelley, M. W. (2006). Inhibitors of differentiation and DNA binding (Ids) regulate Math1 and hair cell formation during the development of the organ of Corti. The Journal of Neuroscience, 26, 550–558.PubMedCrossRefGoogle Scholar
  72. Jørgensen, J. M., & Mathiesen, C. (1988). The avian inner ear: Continuous production of hair cells in vestibular sensory organs, but not in the auditory papilla. Naturwissenschaften, 75(6), 319–320.PubMedCrossRefGoogle Scholar
  73. Kawamoto, K., Ishimoto, S., Minoda, R., Brough, D. E., & Raphael, Y. (2003). Math1 gene transfer generates new cochlear hair cells in mature guinea pigs in vivo. The Journal of Neuroscience, 23(11), 4395–4400.PubMedGoogle Scholar
  74. Kawamoto, K., Izumikawa, M., Beyer, L. A., Atkin, G. M., & Raphael, Y. (2009). Spontaneous hair cell regeneration in the mouse utricle following gentamicin ototoxicity. Hearing Research, 247(1), 17–26.PubMedCrossRefGoogle Scholar
  75. Kelley, M. W., Talreja, D. R., & Corwin, J. T. (1995). Replacement of hair cells after laser microbeam irradiation in cultured organs of Corti from embryonic and neonatal mice. The Journal of Neuroscience, 15(4), 3013–3026.PubMedGoogle Scholar
  76. Kelly, M. C., Chang, Q., Pan, A., Lin, X., & Chen, P. (2012). Atoh1 directs the formation of sensory mosaics and induces cell proliferation in the postnatal mammalian cochlea in vivo. The Journal of Neuroscience, 32(19), 6699–6710.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Kempfle, J. S., Turban, J. L., & Edge, A. S. (2016). Sox2 in the differentiation of cochlear progenitor cells. Science Reports, 6, 23293.CrossRefGoogle Scholar
  78. Kevetter, G. A., Blumberg, K. R., & Correia, M. J. (2000). Hair cell and supporting cell density and distribution in the normal and regenerating posterior crista ampullaris of the pigeon. International Journal of Developmental Neuroscience, 18(8), 855–867.PubMedCrossRefGoogle Scholar
  79. Kiernan, A. E., Cordes, R., Kopan, R., Gossler, A., & Gridley, T. (2005a). The Notch ligands DLL1 and JAG2 act synergistically to regulate hair cell development in the mammalian inner ear. Development, 132, 4353–4362.PubMedCrossRefGoogle Scholar
  80. Kiernan, A. E., Pelling, A. L., Leung, K. K., Tang, A. S., et al. (2005b). Sox2 is required for sensory organ development in the mammalian inner ear. Nature, 434, 1031–1035.PubMedCrossRefGoogle Scholar
  81. Klisch, T. J., Xi, Y., Flora, A., Wang, L., Li, W., & Zoghbi, H. Y. (2011). In vivo Atoh1 targetome reveals how a proneural transcription factor regulates cerebellar development. Proceedings of the National Academy of Sciences of the USA, 108, 3288–3293.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Korrapati, S., Roux, I., Glowatzki, E., & Doetzlhofer, A. (2013). Notch signaling limits supporting cell plasticity in the hair cell-damaged early postnatal murine cochlea. PLoS ONE, 8(8), e73276.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Kraft, S., Hsu, C., Brough, D. E., & Staecker, H. (2013). Atoh1 induces auditory hair cell recovery in mice after ototoxic injury. Laryngoscope, 123(4), 992–999.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Ku, Y. C., Renaud, N. A., Veile, R. A., Helms, C., et al. (2014). The transcriptome of utricle hair cell regeneration in the avian inner ear. The Journal of Neuroscience, 34(10), 3523–3535.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Kuntz, A. L., & Oesterle, E. C. (1998). Transforming growth factor alpha with insulin stimulates cell proliferation in vivo in adult rat vestibular sensory epithelium. The Journal of Comparative Neurology, 399(3), 413–423.PubMedCrossRefGoogle Scholar
  86. Kuo, B. R., Baldwin, E. M., Layman, W. S., Taketo, M. M., & Zuo, J. (2015). In vivo cochlear hair cell generation and survival by coactivation of β-catenin and Atoh1. The Journal of Neuroscience, 35(30), 10786–10798.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Lai, H. C., Klisch, T. J., Roberts, R., Zoghbi, H. Y., & Johnson, J. E. (2011). In vivo neuronal subtype-specific targets of atoh1 (math1) in dorsal spinal cord. The Journal of Neuroscience, 31, 10859–10871.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Laine, H., Doetzlhofer, A., Mantela, J., Ylikoski, J., et al. (2007). p19 (Ink4d) and p21 (Cip1) collaborate to maintain the postmitotic state of auditory hair cells, their codeletion leading to DNA damage and p53-mediated apoptosis. The Journal of Neuroscience, 27(6), 1434–1444.PubMedCrossRefGoogle Scholar
  89. Lambert, P. R. (1994). Inner ear hair cell regeneration in a mammal: Identification of a triggering factor. Laryngoscope, 104(6 Pt 1), 701–718.PubMedGoogle Scholar
  90. Lanford, P. J., Lan, Y., Jiang, R., Lindsell, C., et al. (1999). Notch signalling pathway mediates hair cell development in mammalian cochlea. Nature Genetics, 21, 289–292.PubMedCrossRefGoogle Scholar
  91. Lanford, P. J., Shailam, R., Norton, C. R., Gridley, T., et al. (2000). Expression of Math1 and HES5 in the cochleae of wildtype and Jag2 mutant mice. Journal of the Association for Research in Otolaryngology, 1(2), 161–171.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Lee, Y. S., Liu, F., & Segil, N. (2006). A morphogenetic wave of p27Kip1 transcription directs cell cycle exit during organ of Corti development. Development, 133, 2817–2826.PubMedCrossRefGoogle Scholar
  93. Lewis, R. M., Hume, C. R., & Stone, J. S. (2012). Atoh1 expression and function during auditory hair cell regeneration in post-hatch chickens. Hearing Research, 289(1–2), 74–85.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Li, L., & Forge, A. (1997). Morphological evidence for supporting cell to hair cell conversion in the mammalian utricular macula. International Journal of Developmental Neuroscience, 15(4–5), 433–446.PubMedCrossRefGoogle Scholar
  95. Lin, V., Golub, J., Nguyen, T. B., Hume, C., et al. (2011). Inhibition of notch activity promotes non-mitotic regeneration of HCs in the adult mouse utricle. The Journal of Neuroscience, 31, 15329–15339.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Liu, Z., Dearman, J. A., Cox, B. C., Walters, B. J., et al. (2012a). Age-dependent in vivo conversion of mouse cochlear pillar and Deiters’ cells to immature hair cells by Atoh1 ectopic expression. The Journal of Neuroscience, 32, 6600–6610.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Liu, Z., Fang, J., Dearman, J., Zhang, L., & Zuo, J. (2012b). In vivo generation of immature inner hair cells in neonatal mouse cochleae by ectopic Atoh1 expression. PLoS ONE 9(2), e89377.CrossRefGoogle Scholar
  98. Lombarte, A., Yan, H. Y., Popper, A. N., Chang, J. S., & Platt, C. (1993). Damage and regeneration of hair cell ciliary bundles in a fish ear following treatment with gentamicin. Hearing Research, 64(2), 166–174.PubMedCrossRefGoogle Scholar
  99. Loponen, H., Ylikoski, J., Albrecht, J. H., & Pirvola, U. (2011). Restrictions in cell cycle progression of adult vestibular supporting cells in response to ectopic cyclin D1 expression. PLoS ONE 6(11), e27360.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Löwenheim, H., Furness, D. N., Kil, J., Zinn, C., et al. (1999). Gene disruption of p27(Kip1) allows cell proliferation in the postnatal and adult organ of Corti. Proceedings of the National Academy of Sciences of the USA, 96(7), 4084–4088.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Ma, E. Y., Rubel, E. W., & Raible, D. W. (2008). Notch signaling regulates the extent of hair cell regeneration in the zebrafish lateral line. The Journal of Neuroscience, 28(9), 2261–2273.PubMedCrossRefGoogle Scholar
  102. Ma, Q., Anderson, D. J., & Fritzsch, B. (2000). Neurogenin 1 null mutant ears develop fewer, morphologically normal hair cells in smaller sensory epithelia devoid of innervation. Journal of the Association for Research in Otolaryngology, 1, 129–143.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Maass, J. C., Gu, R., Basch, M. L., Waldhaus, J., et al. (2015). Changes in the regulation of the Notch signaling pathway are temporally correlated with regenerative failure in the mouse cochlea. Frontiers in Cellular Neuroscience, 9, 110.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Masetto, S., & Correia, M. J. (1997). Electrophysiological properties of vestibular sensory and supporting cells in the labyrinth slice before and during regeneration. Journal of Neurophysiology, 78(4), 1913–1927.PubMedGoogle Scholar
  105. McCullar, J. S., Ty, S., Campbell, S., & Oesterle, E. C. (2010). Activin potentiates proliferation in mature avian auditory sensory epithelium. The Journal of Neuroscience, 30(2), 478–490.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Meyers, J. R., & Corwin, J. T. (2007). Shape change controls supporting cell proliferation in lesioned mammalian balance epithelium. The Journal of Neuroscience, 27(16), 4313–4325.PubMedCrossRefGoogle Scholar
  107. Mizutari, K., Fujioka, M., Hosoya, M., Bramhall, N., et al. (2013). Notch inhibition induces cochlear hair cell regeneration and recovery of hearing after acoustic trauma. Neuron, 77(1), 58–69.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Montcouquiol, M., & Corwin, J. T. (2001). Brief treatments with forskolin enhance s-phase entry in balance epithelia from the ears of rats. The Journal of Neuroscience, 21(3), 974–982.PubMedGoogle Scholar
  109. Morest, D. K., & Cotanche, D. A. (2004). Regeneration of the inner ear as a model of neural plasticity. Journal of Neuroscience Research, 78(4), 455–460.PubMedCrossRefGoogle Scholar
  110. Morsli, H., Choo, D., Ryan, A., Johnson, R., & Wu, D. K. (1998). Development of the mouse inner ear and origin of its sensory organs. The Journal of Neuroscience, 18, 3327–3335.PubMedGoogle Scholar
  111. Mulroy, M. J., & Whaley, E. A. (1984). Structural changes in auditory hairs during temporary deafness. Scanning Electron Microscopy, 1984(2), 831–840.Google Scholar
  112. Murata, J., Tokunaga, A., Okano, H., & Kubo, T. (2006). Mapping of notch activation during cochlear development in mice: Implications for determination of prosensory domain and cell fate diversification. The Journal of Comparative Neurology, 497, 502–518.PubMedCrossRefGoogle Scholar
  113. Navaratnam, D. S., Su, H. S., Scott, S. P., & Oberholtzer, J. C. (1996). Proliferation in the auditory receptor epithelium mediated by a cyclic AMP-dependent signaling pathway. Nature Medicine, 2(10), 1136–1139.PubMedCrossRefGoogle Scholar
  114. Niemiec, A. J., Raphael, Y., & Moody, D. B. (1994). Return of auditory function following structural regeneration after acoustic trauma: Behavioral measures from quail. Hearing Research, 79(1–2), 1–16.PubMedCrossRefGoogle Scholar
  115. Oesterle, E. C., Tsue, T. T., & Rubel, E. W. (1997). Induction of cell proliferation in avian inner ear sensory epithelia by insulin-like growth factor-I and insulin. The Journal of Comparative Neurology, 380(2), 262–274.PubMedCrossRefGoogle Scholar
  116. Oesterle, E. C., Bhave, S. A., & Coltrera, M. D. (2000). Basic fibroblast growth factor inhibits cell proliferation in cultured avian inner ear sensory epithelia. The Journal of Comparative Neurology, 424(2), 307–326.PubMedCrossRefGoogle Scholar
  117. Oshima, K., Grimm, C. M., Corrales, C. E., Senn, P., et al. (2007). Differential distribution of stem cells in the auditory and vestibular organs of the inner ear. Journal of the Association for Research in Otolaryngology, 8(1), 18–31.PubMedCrossRefGoogle Scholar
  118. Palermo, R., Checquolo, S., Bellavia, D., Talora, C., & Screpanti, I. (2014). The molecular basis of notch signaling regulation: A complex simplicity. Current Molecular Medicine, 14, 34–44.PubMedCrossRefGoogle Scholar
  119. Puligilla, C., & Kelley, M. W. (2016). Dual role for Sox2 in specification of sensory competence and regulation of Atoh1 function. Developmental Neurobiology, 77(1), 3–13.PubMedCrossRefGoogle Scholar
  120. Raft, S., Nowotschin, S., Liao, J., & Morrow, B. E. (2004). Suppression of neural fate and control of inner ear morphogenesis by Tbx1. Development, 131, 1801–1812.PubMedCrossRefGoogle Scholar
  121. Raft, S., Koundakjian, E. J., Quinones, H., Jayasena, C. S., et al. (2007). Cross-regulation of Ngn1 and Math1 coordinates the production of neurons and sensory hair cells during inner ear development. Development, 134, 4405–4415.PubMedCrossRefGoogle Scholar
  122. Raphael, Y. (1992). Evidence for supporting cell mitosis in response to acoustic trauma in the avian inner ear. Journal of Neurocytology, 21(9), 663–671.PubMedCrossRefGoogle Scholar
  123. Raphael, Y., & Altschuler, R. A. (1991). Scar formation after drug-induced cochlear insult. Hearing Research, 51(2), 173–183.PubMedCrossRefGoogle Scholar
  124. Riccomagno, M. M., Martinu, L., Mulheisen, M., Wu, D. K., & Epstein, D. J. (2002). Specification of the mammalian cochlea is dependent on Sonic hedgehog. Genes and Development, 16, 2365–2378.PubMedPubMedCentralCrossRefGoogle Scholar
  125. Riccomagno, M. M., Takada, S., & Epstein, D. J. (2005). Wnt-dependent regulation of inner ear morphogenesis is balanced by the opposing and supporting roles of Shh. Genes and Development, 19, 1612–1623.PubMedPubMedCentralCrossRefGoogle Scholar
  126. Roberson, D. W., & Rubel, E. W. (1994). Cell division in the gerbil cochlea after acoustic trauma. The American Journal of Otology, 15(1), 28–34.PubMedGoogle Scholar
  127. Roberson, D. W., Kreig, C. S., & Rubel, E. W. (1996). Light microscopic evidence that direct transdifferentiation gives rise to new hair cells in regenerating avian auditory epithelium. Auditory Neuroscience, 2, 195–205.Google Scholar
  128. Roberson, D. W., Alosi, J. A., & Cotanche, D. A. (2004). Direct transdifferentiation gives rise to the earliest new hair cells in regenerating avian auditory epithelium. Journal of Neuroscience Research, 78(4), 461–471.PubMedCrossRefGoogle Scholar
  129. Roberto, M., & Zito, F. (1988). Scar formation following impulse noise-induced mechanical damage to the organ of Corti. The Journal of Laryngology and Otology, 102(1), 2–9.PubMedCrossRefGoogle Scholar
  130. Romand, R., Chardin, S., & Le Calvez, S. (1996). The spontaneous appearance of hair cell-like cells in the mammalian cochlea following aminoglycoside ototoxicity. NeuroReport, 8(1), 133–137.PubMedCrossRefGoogle Scholar
  131. Romero-Carvajal, A., Navajas Acedo, J., Jiang, L., Kozlovskaja-Gumbrienė, A., et al. (2015). Regeneration of sensory hair cells requires localized interactions between the Notch and Wnt pathways. Developmental Cell, 34(3), 267–282.PubMedPubMedCentralCrossRefGoogle Scholar
  132. Rubel, E. W. (1978). Ontogeny of structure and function in the vertebrate auditory system. In Handbook of sensory physiology (pp. 135–237), New York: Springer.Google Scholar
  133. Rubel, E. W., Dew, L. A., & Roberson, D. W. (1995). Mammalian vestibular hair cellf regeneration. Science, 267(5198), 701–707.PubMedCrossRefGoogle Scholar
  134. Ruben, R. J. (1967). Development of the inner ear of the mouse: A radioautographic study of terminal mitoses. Acta Oto-Laryngologica Supplementum, 220, 1–44.Google Scholar
  135. Rusch, A., Erway, L. C., Oliver, D., Vennstrom, B., & Forrest, D. (1998). Thyroid hormone receptor beta-dependent expression of a potassium conductance in inner hair cells at the onset of hearing. Proceedings of the National Academy of Sciences of the USA, 95, 15758–15762.PubMedPubMedCentralCrossRefGoogle Scholar
  136. Ryals, B. M., & Rubel, E. W. (1988). Hair cell regeneration after acoustic trauma in adult Coturnix quail. Science, 240(4860), 1774–1776.PubMedCrossRefGoogle Scholar
  137. Ryals, B. M., & Westbrook, E. W. (1994). TEM analysis of neural terminals on autoradiographically identified regenerated hair cells. Hearing Research, 72(1–2), 81–88.PubMedCrossRefGoogle Scholar
  138. Ryals, B. M., Dent, M. L., & Dooling, R. J. (2013). Return of function after hair cell regeneration. Hearing Research, 297, 113–120.PubMedCrossRefGoogle Scholar
  139. Schimmang, T., & Pirvola, U. (2013). Coupling the cell cycle to development and regeneration of the inner ear. Seminars in Cell and Developmental Biology, 24, 507–513.PubMedCrossRefGoogle Scholar
  140. Schlecker, C., Praetorius, M., Brough, D. E., Presler, R. G. Jr., et al. (2011). Selective atonal gene delivery improves balance function in a mouse model of vestibular disease. Gene Therapy, 18(9), 884–890.PubMedPubMedCentralCrossRefGoogle Scholar
  141. Shi, F., Cheng, Y. F., Wang, X. L., & Edge, A. S. (2010). Beta-catenin up-regulates Atoh1 expression in neural progenitor cells by interaction with an Atoh1 3′ enhancer. The Journal of Biological Chemistry, 285, 392–400.PubMedCrossRefGoogle Scholar
  142. Shi, F., Hu, L., & Edge, A. S. (2013). Generation of hair cells in neonatal mice by β-catenin overexpression in Lgr5-positive cochlear progenitors. Proceedings of the National Academy of Sciences of the USA, 110(34), 13851–13856.PubMedPubMedCentralCrossRefGoogle Scholar
  143. Shou, J., Zheng, J. L., & Gao, W. Q. (2003). Robust generation of new hair cells in the mature mammalian inner ear by adenoviral expression of Hath1. Molecular and Cellular Neuroscience, 23(2), 169–179.PubMedCrossRefGoogle Scholar
  144. Slattery, E. L., & Warchol, M. E. (2010). Cisplatin ototoxicity blocks sensory regeneration in the avian inner ear. The Journal of Neuroscience, 30(9), 3473–3481.PubMedPubMedCentralCrossRefGoogle Scholar
  145. Slattery, E. L., Speck, J. D., & Warchol, M. E. (2009). Epigenetic influences on sensory regeneration: Histone deacetylases regulate supporting cell proliferation in the avian utricle. Journal of the Association for Research in Otolaryngology, 10(3), 341–353.PubMedPubMedCentralCrossRefGoogle Scholar
  146. Slowik, A. D., & Bermingham-McDonogh, O. (2013). Hair cell generation by notch inhibition in the adult mammalian cristae. Journal of the Association for Research in Otolaryngology, 14(6), 813–828.PubMedPubMedCentralCrossRefGoogle Scholar
  147. Sobkowicz, H. M., August, B. K., & Slapnick, S. M. (1996). Post-traumatic survival and recovery of the auditory sensory cells in culture. Acta Oto-Laryngologica, 116(2), 257–262.PubMedCrossRefGoogle Scholar
  148. Song, J., Yan, H. Y., & Popper, A. N. (1995). Damage and recovery of hair cells in fish canal (but not superficial) neuromasts after gentamicin exposure. Hearing Research, 91(1–2), 63–71.PubMedCrossRefGoogle Scholar
  149. Staecker, H., Praetorius, M., Baker, K., & Brough, D. E. (2007). Vestibular hair cell regeneration and restoration of balance function induced by math1 gene transfer. Otolaryngology and Neurotology, 28(2), 223–231.CrossRefGoogle Scholar
  150. Steyger, P. S., Burton, M., Hawkins, J. R., Schuff, N. R., & Baird, R. A. (1997). Calbindin and parvalbumin are early markers of non-mitotically regenerating hair cells in the bullfrog vestibular otolith organs. International Journal of Developmental Neuroscience, 15(4–5), 417–432.PubMedCrossRefGoogle Scholar
  151. Stojanova, Z. P., Kwan, T., & Segil, N. (2015). Epigenetic regulation of Atoh1 guides hair cell development in the mammalian cochlea. Development, 142(20), 3529–3536.PubMedPubMedCentralCrossRefGoogle Scholar
  152. Stone, J. S., & Cotanche, D. A. (1994). Identification of the timing of S phase and the patterns of cell proliferation during hair cell regeneration in the chick cochlea. The Journal of Comparative Neurology, 341, 50–67.PubMedCrossRefGoogle Scholar
  153. Stone, J. S., & Rubel, E. W. (1999). Delta1 expression during avian hair cell regeneration. Development, 126, 961–973.PubMedGoogle Scholar
  154. Stone, J. S., & Rubel, E. W. (2000). Temporal, spatial, and morphological features of hair cell regeneration in the avian basilar papilla. The Journal of Comparative Neurology, 417, 1–16.PubMedCrossRefGoogle Scholar
  155. Stone, J. S., Choi, Y.-S., Yamashita, H., Woolley, S. M. N., & Rubel, E. W. (1999). Progenitor cell cycling during hair cell regeneration in the vestibular and auditory epithelia of the chick. Journal of Neurocytology, 28, 863–876.PubMedCrossRefGoogle Scholar
  156. Takahashi, K., & Yamanaka, S. (2016). A decade of transcription factor-mediated reprogramming to pluripotency. Nature Reviews Molecular and Cellular Biology, 17, 183–193.CrossRefGoogle Scholar
  157. Taylor, R. R., & Forge, A. (2005). Hair cell regeneration in sensory epithelia from the inner ear of a urodele amphibian. The Journal of Comparative Neurology, 484(1), 105–120.PubMedCrossRefGoogle Scholar
  158. Taylor, R. R., Jagger, D. J., Saeed, S. R., Axon, P., et al. (2015). Characterizing human vestibular sensory epithelia for experimental studies: New hair bundles on old tissue and implications for therapeutic interventions in ageing. Neurobiology of Aging, 36(6), 2068–2084.PubMedPubMedCentralCrossRefGoogle Scholar
  159. Ushakov, K., Rudnicki, A., & Avraham, K. B. (2013). MicroRNAs in sensorineural diseases of the ear. Frontiers in Molecular Neuroscience, 6, 52.PubMedPubMedCentralCrossRefGoogle Scholar
  160. Wallis, D., Hamblen, M., Zhou, Y., Venken, K. J., et al. (2003). The zinc finger transcription factor Gfi1, implicated in lymphomagenesis, is required for inner ear hair cell differentiation and survival. Development, 130, 221–232.PubMedCrossRefGoogle Scholar
  161. Wang, T., Chai, R., Kim, G. S., Pham, N., et al. (2015). Lgr5+ cells regenerate hair cells via proliferation and direct transdifferentiation in damaged neonatal mouse utricle. Nature Communications, 6, 6613.PubMedPubMedCentralCrossRefGoogle Scholar
  162. Wang, Y., Hirose, K., & Liberman, M. C. (2002). Dynamics of noise-induced cellular injury and repair in the mouse cochlea. Journal of the Association for Research in Otolaryngology, 3(3), 248–268.PubMedPubMedCentralCrossRefGoogle Scholar
  163. Warchol, M. E. (1999). Immune cytokines and dexamethasone influence sensory regeneration in the avian vestibular periphery. Journal of Neurocytology, 28(10–11), 889–900.PubMedCrossRefGoogle Scholar
  164. Warchol, M. E., & Corwin, J. T. (1996). Regenerative proliferation in organ cultures of the avian cochlea: Identification of the initial progenitors and determination of the latency of the proliferative response. The Journal of Neuroscience, 16(17), 5466–5477.PubMedGoogle Scholar
  165. Warchol, M. E., Lambert, P. R., Goldstein, B. J., Forge, A., & Corwin, J. T. (1993). Regenerative proliferation in inner ear sensory epithelia from adult guinea pigs and humans. Science, 259(5101), 1619–22.PubMedCrossRefGoogle Scholar
  166. Weber, T., Zimmermann, U., Winter, H., Mack, A., et al. (2002). Thyroid hormone is a critical determinant for the regulation of the cochlear motor protein prestin. Proceedings of the National Academy of Sciences of the USA, 99, 2901–2906.PubMedPubMedCentralCrossRefGoogle Scholar
  167. Weisleder, P., & Rubel, E. W. (1993). Hair cell regeneration after streptomycin toxicity in the avian vestibular epithelium. The Journal of Comparative Neurology, 331(1), 97–110.PubMedCrossRefGoogle Scholar
  168. White, P. M., Doetzlhofer, A., Lee, Y. S., Groves, A. K., & Segil, N. (2006). Mammalian cochlear supporting cells can divide and trans-differentiate into hair cells. Nature, 441(7096), 984–987.PubMedCrossRefGoogle Scholar
  169. White, P. M., Stone, J. S., Groves, A. K., & Segil, N. (2012). EGFR signaling is required for regenerative proliferation in the cochlea: Conservation in birds and mammals. Developmental Biology, 363(1), 191–200.PubMedPubMedCentralCrossRefGoogle Scholar
  170. Williams, J. A., & Holder, N. (2000). Cell turnover in neuromasts of zebrafish larvae. Hearing Research, 143(1–2), 171–181.PubMedCrossRefGoogle Scholar
  171. Winter, H., Braig, C., Zimmermann, U., Geisler, H. S., et al. (2006). Thyroid hormone receptors TRalpha1 and TRbeta differentially regulate gene expression of Kcnq4 and prestin during final differentiation of outer hair cells. Journal of Cell Science, 119, 2975–2984.PubMedCrossRefGoogle Scholar
  172. Witte, M. C., Montcouquiol, M., & Corwin, J. T. (2001). Regeneration in avian hair cell epithelia: Identification of intracellular signals required for S-phase entry. European Journal of Neuroscience, 14(5), 829–838.PubMedCrossRefGoogle Scholar
  173. Woods, C., Montcouquiol, M., & Kelley, M. W. (2004). Math1 regulates development of the sensory epithelium in the mammalian cochlea. Nature Neuroscience, 7, 1310–1318.PubMedCrossRefGoogle Scholar
  174. Wu, D. K., & Kelley, M. W. (2012). Molecular mechanisms of inner ear development. Cold Spring Harbor Perspectives in Biology, 4, a008409.PubMedPubMedCentralCrossRefGoogle Scholar
  175. Xu, J. C., Huang, D. L., Hou, Z. H., Guo, W. W., et al. (2012). Type I hair cell regeneration induced by Math1 gene transfer following neomycin ototoxicity in rat vestibular sensory epithelium. Acta Oto-laryngologica, 132(8), 819–828.PubMedGoogle Scholar
  176. Xu, P. X., Adams, J., Peters, H., Brown, M. C., et al. (1999). Eya1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nature Genetics, 23, 113–117.PubMedCrossRefGoogle Scholar
  177. Yamamoto, N., Tanigaki, K., Tsuji, M., Yabe, D., et al. (2006). Inhibition of Notch/RBP-J signaling induces hair cell formation in neonate mouse cochleas. Journal of Molecular Medicine (Berlin), 84(1), 37–45.Google Scholar
  178. Yamashita, H., & Oesterle, E. C. (1995). Induction of cell proliferation in mammalian inner-ear sensory epithelia by transforming growth factor alpha and epidermal growth factor. Proceedings of the National Academy of Sciences of the USA, 92(8), 3152–2155.PubMedPubMedCentralCrossRefGoogle Scholar
  179. Yang, S. M., Chen, W., Guo, W. W., Jia, S., et al. (2012). Regeneration of stereocilia of hair cells by forced Atoh1 expression in the adult mammalian cochlea. PLoS ONE, 7(9), e46355.PubMedPubMedCentralCrossRefGoogle Scholar
  180. Zhang, N., Martin, G. V., Kelley, M. W., & Gridley, T. (2000). A mutation in the Lunatic fringe gene suppresses the effects of a Jagged2 mutation on inner hair cell development in the cochlea. Current Biology, 10, 659–662.PubMedCrossRefGoogle Scholar
  181. Zhang, S., & Cui, W. (2014). Sox2, a key factor in the regulation of pluripotency and neural differentiation. World Journal of Stem Cells, 6, 305–311.PubMedPubMedCentralCrossRefGoogle Scholar
  182. Zheng, J. L., & Gao, W. Q. (1996). Differential damage to auditory neurons and hair cells by ototoxins and neuroprotection by specific neurotrophins in rat cochlear organotypic cultures. European Journal of Neuroscience, 8(9), 1897–1905.PubMedCrossRefGoogle Scholar
  183. Zheng, J. L., & Gao, W. Q. (2000). Overexpression of Math1 induces robust production of extra hair cells in postnatal rat inner ears. Nature Neuroscience, 3, 580–586.PubMedCrossRefGoogle Scholar
  184. Zheng, J. L., Helbig, C., & Gao, W. Q. (1997). Induction of cell proliferation by fibroblast and insulin-like growth factors in pure rat inner ear epithelial cell cultures. The Journal of Neuroscience, 17(1), 216–226.PubMedGoogle Scholar
  185. Zheng, J. L., Keller, G., & Gao, W. Q. (1999a). Immunocytochemical and morphological evidence for intracellular self-repair as an important contributor to mammalian hair cell recovery. The Journal of Neuroscience, 19(6), 2161–2170.PubMedGoogle Scholar
  186. Zheng, J. L., Frantz, G., Lewis, A. K., Sliwkowski, M., & Gao, W. Q. (1999b). Heregulin enhances regenerative proliferation in postnatal rat utricular sensory epithelium after ototoxic damage. Journal of Neurocytology, 28(10–11), 901–912.PubMedCrossRefGoogle Scholar
  187. Zheng, W., Huang, L., Wei, Z. B., Silvius, D., et al. (2003). The role of Six1 in mammalian auditory system development. Development, 130, 3989–4000.PubMedPubMedCentralCrossRefGoogle Scholar
  188. Zine, A., Aubert, A., Qiu, J., Therianos, S., et al. (2001). Hes1 and Hes5 activities are required for the normal development of the hair cells in the mammalian inner ear. The Journal of Neuroscience, 21, 4712–4720.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Laboratory of Cochlear DevelopmentNational Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUSA
  2. 2.Department of Otolaryngology/Head and Neck Surgery and Virginia Merrill Bloedel Hearing Research CenterUniversity of Washington School of MedicineSeattleUSA

Personalised recommendations