Advertisement

Auditory System Development: A Tribute to Edwin W Rubel

  • Karina S. Cramer
  • Allison B. Coffin
Chapter
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 64)

Abstract

Auditory function depends on highly ordered structures and extremely precise connectivity. Understanding the ontogeny of these pathways represents a unique interdisciplinary challenge in auditory research. The field of auditory system development has expanded significantly over the past decades, when the Springer Handbook of Auditory Research (SHAR) last dedicated a volume to this topic (Rubel et al., Development of the auditory system. New York: Springer-Verlag, 1998). Progress has been driven by new approaches and by interdisciplinary research at the molecular, cellular, systems, and behavioral levels. This volume presents some of the most recent advances. It is written in celebration of the career of Dr. Edwin W Rubel, who has contributed a vast range of new discoveries in this area. Ed has not only pioneered this research, but he has also served as a dedicated colleague and mentor committed to cultivating future investigators. He has trained nearly 100 graduate students and postdoctoral fellows, and his research group and colleagues have established an exemplary culture of collaborative support. The authors of the chapters in this book present a tribute to Ed and to his positive influence on their research and their scientific careers.

Keywords

Auditory brainstem Dendrite Frequency-place map Hair cells Nucleus laminaris Nucleus magnocellularis Regeneration 

Notes

Compliance with Ethics Requirements

Karina Cramer declares that she has no conflict of interest. Allison Coffin declares that she has no conflict of interest.

References

  1. Benes, F. M., Parks, T. N., & Rubel, E. W. (1977). Rapid dendritic atrophy following deafferentation: An EM morphometric analysis. Brain Research, 122(1), 1–13.CrossRefPubMedGoogle Scholar
  2. Born, D. E., & Rubel, E. W. (1985). Afferent influences on brain stem auditory nuclei of the chicken: Neuron number and size following cochlea removal. The Journal of Comparative Neurology, 231(4), 435–445.CrossRefPubMedGoogle Scholar
  3. Corwin, J. T., & Cotanche, D. A. (1988). Regeneration of sensory hair cells after acoustic trauma. Science, 240(4860), 1772–1774.CrossRefPubMedGoogle Scholar
  4. Cotanche, D. A. (1987). Regeneration of hair cell stereociliary bundles in the chick cochlea following severe acoustic trauma. Hearing Research, 30(2–3), 181–195.CrossRefPubMedGoogle Scholar
  5. Cramer, K. S., & Rubel, E. W. (2016). Glial cell contributions to auditory brainstem development. Frontiers in Neural Circuits, 10, 83.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cruz, R. M., Lambert, P. R., & Rubel, E. W. (1987). Light microscopic evidence of hair cell regeneration after gentamicin toxicity in chick cochlea. Archives of Otolaryngology –Head and Neck Surgery, 113(10), 1058–1062.CrossRefPubMedGoogle Scholar
  7. Golub, J. S., Tong, L., Ngyuen, T. B., Hume, C. R., et al. (2012). Hair cell replacement in adult mouse utricles after targeted ablation of hair cells with diphtheria toxin. The Journal of Neuroscience, 32(43), 15093–15105.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Harris, J. A., Iguchi, F., Seidl, A. H., Lurie, D. I., & Rubel, E. W. (2008). Afferent deprivation elicits a transcriptional response associated with neuronal survival after a critical period in the mouse cochlear nucleus. The Journal of Neuroscience, 28(43), 10990–11002.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Hashisaki, G. T., & Rubel, E. W. (1989). Effects of unilateral cochlea removal on anteroventral cochlear nucleus neurons in developing gerbils. The Journal of Comparative Neurology, 283(4), 5–73.CrossRefPubMedGoogle Scholar
  10. Lippe, W., & Rubel, E. W. (1983). Development of the place principle: Tonotopic organization. Science, 219(4584), 514–516.CrossRefPubMedGoogle Scholar
  11. Mills, D. M., & Rubel, E. W. (1998). Development of the base of the cochlea: Place code shift in the gerbil. Hearing Research, 122(1–2), 82–96.CrossRefPubMedGoogle Scholar
  12. Norton, S. J., Bargones, J. Y., & Rubel, E. W. (1991). Development of otoacoustic emissions in gerbil: Evidence for micromechanical changes underlying development of the place code. Hearing Research, 51(1), 73–91.CrossRefPubMedGoogle Scholar
  13. Overholt, E. M., Rubel, E. W., & Hyson, R. L. (1992). A circuit for coding interaural time differences in the chick brainstem. The Journal of Neuroscience, 12(5), 1698–1708.PubMedGoogle Scholar
  14. Owens, K. N., Santos, F., Roberts, B., Linbo, T., et al. (2008). Identification of genetic and chemical modulators of zebrafish mechanosensory hair cell death. PLoS Genetics, 4(2), e1000020.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Parks, T. N., & Rubel, E. W. (1975). Organization and development of brain stem auditory nuclei of the chicken: Organization of projections from n. magnocellularis to n. laminaris. The Journal of Comparative Neurology, 164(4), 435–448.CrossRefPubMedGoogle Scholar
  16. Rubel, E. W. (1971). A comparison of somatotopic organization in sensory neocortex of newborn kittens and adult cats. The Journal of Comparative Neurology, 143(4), 447–480.CrossRefPubMedGoogle Scholar
  17. Rubel, E. W. (1978). Ontogeny of structure and function in the vertebrates auditory system. In M. Jacobson (Ed.), Handbook of sensory physiology (pp. 135–237). New York: Springer.Google Scholar
  18. Rubel, E. W., & Parks, T. N. (1975). Organization and development of brain stem auditory nuclei of the chicken: Tonotopic organization of n. magnocellularis and n. laminaris. The Journal of Comparative Neurology, 164(4), 411–433.CrossRefPubMedGoogle Scholar
  19. Rubel, E. W., Smith, D. J., & Miller, L. C. (1976). Organization and development of brain stem auditory nuclei of the chicken: Ontogeny of n. magnocellularis and n. laminaris. The Journal of Comparative Neurology, 166, 469–490.CrossRefPubMedGoogle Scholar
  20. Ryals, B. M., & Rubel, E. W. (1988). Hair cell regeneration after acoustic trauma in adult Coturnix quail. Science, 240(4860), 1774–1776.CrossRefPubMedGoogle Scholar
  21. Sanes, D. H., Merickel, M., & Rubel, E. W. (1989). Evidence for an alteration of the tonotopic map in the gerbil cochlea during development. The Journal of Comparative Neurology, 279(3), 436–444.CrossRefPubMedGoogle Scholar
  22. Schecterson, L. C., Sanchez, J. T., Rubel, E. W., & Bothwell, M. (2012). TrkB downregulation is required for dendrite retraction in developing neurons of chicken nucleus magnocellularis. The Journal of Neuroscience, 32(40), 14000–14009.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Seidl, A. H., & Rubel, E. W. (2016). Systematic and differential myelination of axon collaterals in the mammalian auditory brainstem. Glia, 64(4), 487–494.CrossRefPubMedGoogle Scholar
  24. Seidl, A. H., Rubel, E. W., & Barria, A. (2014). Differential conduction velocity regulation in ipsilateral and contralateral collaterals innervating brainstem coincidence detector neurons. The Journal of Neuroscience, 34(14), 4914–4919.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Smith, D. J., & Rubel, E. W. (1979). Organization and development of brain stem auditory nuclei of the chicken: Dendritic gradients in nucleus laminaris. The Journal of Comparative Neurology, 186(2), 213–239.CrossRefPubMedGoogle Scholar
  26. Sorensen, S. A., & Rubel, E. W. (2006). The level and integrity of synaptic input regulates dendrite structure. The Journal of Neuroscience, 26(5), 1539–1550.CrossRefPubMedGoogle Scholar
  27. Tong, L., Strong, M. K., Kaur, T., Juiz, J. M., et al. (2015). Selective deletion of cochlear hair cells causes rapid age-dependent changes in spiral ganglion and cochlear nucleus neurons. The Journal of Neuroscience, 35(20), 7878–7891.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Wang, Y., & Rubel, E. W. (2012). In vivo reversible regulation of dendritic patterning by afferent input in bipolar auditory neurons. The Journal of Neuroscience, 32(33), 11495–11504.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Wang, Y., Sakano, H., Beebe, K., Brown, M. R., et al. (2014). Intense and specialized dendritic localization of the fragile X mental retardation protein in binaural brainstem neurons: A comparative study in the alligator, chicken, gerbil, and human. The Journal of Comparative Neurology, 522(9), 2107–2128.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Young, S. R., & Rubel, E. W. (1983). Frequency-specific projections of individual neurons in chick brainstem auditory nuclei. The Journal of Neuroscience, 3(7), 1373–1378.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Neurobiology and BehaviorUniversity of California, IrvineIrvineUSA
  2. 2.Department of Integrative Physiology and NeuroscienceWashington State University VancouverVancouverUSA

Personalised recommendations