Skip to main content

Complexity Bounds of Constant-Space Quantum Computation

(Extended Abstract)

  • Conference paper
  • First Online:
Developments in Language Theory (DLT 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9168))

Included in the following conference series:

  • 532 Accesses

Abstract

We model constant-space quantum computation as measure-many two-way quantum finite automata and evaluate their language recognition power by analyzing their behaviors and explore their properties. In particular, when the automata halt “in finite steps,” they must terminate in worst-case liner time. Even if all computation paths of bounded-error automata do not terminate, it suffices to focus only on computation paths that terminate after exponentially many steps. We present a classical simulation of those automata on multi-head probabilistic finite automata with cut points. Moreover, we discuss how the power of the automata varies as the automata’s acceptance criteria change to error free, one-sided error, bounded error, and unbounded error.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adleman, L.M., DeMarrais, J., Huang, M.A.: Quantum computability. SIAM J. Comput. 26, 1524–1540 (1997)

    Article  MathSciNet  Google Scholar 

  2. Ambainis, A., Freivalds, R.: 1-way quantum finite automata: strengths, weaknesses and generalizations. In: FOCS 1998, pp. 332–341 (1998)

    Google Scholar 

  3. Dwork, C., Stockmeyer, L.: Finite state verifier I: the power of interaction. J. ACM 39, 800–828 (1992)

    Article  MathSciNet  Google Scholar 

  4. Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: FOCS 1997, pp. 66–75 (1997)

    Google Scholar 

  5. Macarie, I.: Closure properties of stochastic languages. Technical Report No.441, Computer Science Department, University of Rochester (1993)

    Google Scholar 

  6. Macarie, I.I.: Multihead two-way probabilistic finite automata. Theory Comput. Syst. 30, 91–109 (1997)

    Article  MathSciNet  Google Scholar 

  7. Mahajan, M., Vinay, V.: Determinant: combinatorics, algorithms, and complexity. Chicago J. Theoret. Comput. Sci. 1997, Article no. 1997–5 (1997)

    Google Scholar 

  8. Moore, C., Crutchfield, J.: Quantum automata and quantum grammar. Theor. Comput. Sci. 237, 275–306 (2000)

    Article  MathSciNet  Google Scholar 

  9. Nishimura, H., Yamakami, T.: An application of quantum finite automata to interactive proof systems. J. Comput. System Sci. 75, 255–269 (2009)

    Article  MathSciNet  Google Scholar 

  10. Rabin, M.O.: Probabilistic automata. Inform. Control 6, 230–244 (1963)

    Article  Google Scholar 

  11. Stolarsky, K.B.: Algebraic Numbers and Diophantine Approximations. Marcel Dekker (1974)

    Google Scholar 

  12. Watrous, J.: On the complexity of simulating space-bounded quantum computations. Computational Complexity 12, 48–84 (2003)

    Article  MathSciNet  Google Scholar 

  13. Yakaryilmaz, A., Say, A.C.C.: Unbounded-error quantum computation with small space bounds. Inf. Comput. 209, 873–892 (2011)

    Article  MathSciNet  Google Scholar 

  14. Yamakami, T.: Analysis of quantum functions. Internat. J. Found. Comput. Sci. 14, 815–852 (2003)

    Article  MathSciNet  Google Scholar 

  15. Yamakami, T., Yao, A.C.: NQP\(_{\mathbb{C}}={\rm co}\text{-C}_{=}{\rm P}\). Inf. Process. Lett. 71, 63–69 (1999)

    Google Scholar 

  16. Yao, A.C.: Class Note. Unpublished. Princeton University (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoyuki Yamakami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Yamakami, T. (2015). Complexity Bounds of Constant-Space Quantum Computation. In: Potapov, I. (eds) Developments in Language Theory. DLT 2015. Lecture Notes in Computer Science(), vol 9168. Springer, Cham. https://doi.org/10.1007/978-3-319-21500-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21500-6_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21499-3

  • Online ISBN: 978-3-319-21500-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics