Skip to main content

Interval Exchange Words and the Question of Hof, Knill, and Simon

  • Conference paper
  • First Online:
Developments in Language Theory (DLT 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9168))

Included in the following conference series:

Abstract

We consider words coding non-degenerate 3 interval exchange transformation. It is known that such words contain infinitely many palindromic factors. We show that for any morphism \(\xi \) fixing such a word, either \(\xi \) or \(\xi ^2\) is conjugate to a class P morphism. By this, we provide a new family of palindromic infinite words satisfying the conjecture of Hof, Knill and Simon, as formulated by Tan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arnoux, P., Berthé, V., Masáková, Z., Pelantová, E.: Sturm numbers and substitution invariance of 3iet words. Integers 8 (Article A14) (2008)

    Google Scholar 

  2. Blondin Massé, A., Brlek, S., Garon, A., Labbé, S.: Equations on palindromes and circular words. Theoret. Comput. Sci. 412, 2922–2930 (2011)

    Article  MathSciNet  Google Scholar 

  3. Blondin Massé, A., Brlek, S., Labbé, S.: Palindromic lacunas of the Thue-Morse word. In: Proc. GASCom 2008, pp. 53–67 (2008)

    Google Scholar 

  4. Ferenczi, S., Holton, C., Zamboni, L.: Structure of three-interval exchange transformations II: a combinatorial description of the tranjectories. J. Anal. Math. 89, 239–276 (2003)

    Article  MathSciNet  Google Scholar 

  5. Gawrychowski, P., Manea, F., Nowotka, D.: Testing generalised freeness of words. In: Mayr, E.W., Portier, N. (eds.) 31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014). (LIPIcs), vol. 25, pp. 337–349. Dagstuhl, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Germany (2014)

    Google Scholar 

  6. Hof, A., Knill, O., Simon, B.: Singular continuous spectrum for palindromic Schrödinger operators. Comm. Math. Phys. 174, 149–159 (1995)

    Article  MathSciNet  Google Scholar 

  7. Kari, L., Mahalingam, K.: Watson-crick conjugate and commutative words. In: Garzon, M.H., Yan, H. (eds.) DNA 2007. LNCS, vol. 4848, pp. 273–283. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Keane, M.: Interval exchange transformations. Math. Z. 141, 25–31 (1975)

    Article  MathSciNet  Google Scholar 

  9. Labbé, S., Pelantová, E.: Palindromic sequences generated from marked morphisms. Eur. J. Comb. 51, 200–214 (2016)

    Article  Google Scholar 

  10. Labbé, S.: A counterexample to a question of Hof, Knill and Simon. Electron. J. Comb. 21 (2014)

    Google Scholar 

  11. Lothaire, M.: Algebraic combinatorics on words. Encyclopedia of Mathematics and its Applications, vol. 90. Cambridge University Press (2002)

    Google Scholar 

  12. Masáková, Z., Pelantová, E., Starosta, Š: Interval exchange words and the question of Hof, Knill, and Simon (2015). (preprint available at) http://arxiv.org/abs/1503.03376

  13. Tan, B.: Mirror substitutions and palindromic sequences. Theoret. Comput. Sci. 389, 118–124 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Štěpán Starosta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Masáková, Z., Pelantová, E., Starosta, Š. (2015). Interval Exchange Words and the Question of Hof, Knill, and Simon. In: Potapov, I. (eds) Developments in Language Theory. DLT 2015. Lecture Notes in Computer Science(), vol 9168. Springer, Cham. https://doi.org/10.1007/978-3-319-21500-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21500-6_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21499-3

  • Online ISBN: 978-3-319-21500-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics