Skip to main content

Palindromic Complexity of Trees

  • Conference paper
  • First Online:
Developments in Language Theory (DLT 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9168))

Included in the following conference series:

Abstract

We consider finite trees with edges labeled by letters on a finite alphabet \(\varSigma \). Each pair of nodes defines a unique labeled path whose trace is a word of the free monoid \(\varSigma ^*\). The set of all such words defines the language of the tree. In this paper, we investigate the palindromic complexity of trees and provide hints for an upper bound on the number of distinct palindromes in the language of a tree.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allouche, J.P., Baake, M., Cassaigne, J., Damanik, D.: Palindrome complexity. Theoretical Computer Science 292(1), 9–31 (2003)

    Article  MathSciNet  Google Scholar 

  2. Balková, L., Pelantová, E., Starosta, S.: Proof of the Brlek-Reutenauer conjecture. Theoretical Computer Science 475, 120–125 (2013)

    Article  MathSciNet  Google Scholar 

  3. Berthé, V., Vuillon, L.: Tilings and rotations on the torus: a two-dimensional generalization of Sturmian sequences. Discrete Mathematics 223(1–3), 27–53 (2000)

    Article  MathSciNet  Google Scholar 

  4. Brlek, S., Hamel, S., Nivat, M., Reutenauer, C.: On the palindromic complexity of infinite words. International Journal on Foundation of Computer Science 15(2), 293–306 (2004)

    Article  MathSciNet  Google Scholar 

  5. Brlek, S., Reutenauer, C.: Complexity and palindromic defect of infinite words. Theoretical Computer Science 412(4–5), 493–497 (2011)

    Article  MathSciNet  Google Scholar 

  6. Crochemore, M., Iliopoulos, C.S., Kociumaka, T., Kubica, M., Radoszewski, J., Rytter, W., Tyczyński, W., Waleń, T.: The maximum number of squares in a tree. In: Kärkkäinen, J., Stoye, J. (eds.) CPM 2012. LNCS, vol. 7354, pp. 27–40. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. de Luca, A.: Sturmian words: Structure, combinatorics, and their arithmetics. Theoretical Computer Science 183(1), 45–82 (1997)

    Article  MathSciNet  Google Scholar 

  8. Domenjoud, E., Provençal, X., Vuillon, L.: Palindromic language of thin discrete planes (to appear)

    Google Scholar 

  9. Domenjoud, E., Vuillon, L.: Geometric palindromic closure. Uniform Distribution Theory 7(2), 109–140 (2012)

    MathSciNet  Google Scholar 

  10. Droubay, X., Justin, J., Pirillo, G.: Episturmian words and some constructions of de Luca and Rauzy. Theoretical Computer Science 255(1–2), 539–553 (2001)

    Article  MathSciNet  Google Scholar 

  11. Erdös, P., Turán, P.: On a problem of Sidon in additive number theory, and on some related problems. Journal of the London Mathematical Society. Second Series 16, 212–215 (1941)

    Article  MathSciNet  Google Scholar 

  12. Fraenkel, A.S., Simpson, J.: How many squares can a string contain? J. Combin. Theory Ser. A 82(1), 112–120 (1998)

    Article  MathSciNet  Google Scholar 

  13. Glen, A., Justin, J.: Episturmian words: a survey. Theoretical Informatics and Applications. Informatique Théorique et Applications 43(3), 403–442 (2009)

    Article  MathSciNet  Google Scholar 

  14. Gowers, T.: What are dense Sidon subsets of \(\{1,2, \ldots , n\}\) like? (2012). gowers.wordpress.com/2012/07/13/what-are-dense-sidon-subsets-of-12-n-like/

  15. Hof, A., Knill, O., Simon, B.: Singular continuous spectrum for palindromic Schrödinger operators. Comm. in Mathematical Physics 174(1), 149–159 (1995)

    Article  MathSciNet  Google Scholar 

  16. Labbé, S., Reutenauer, C.: A \(d\)-dimensional extension of Christoffel words. Discrete & Computational Geometry (2015). http://arxiv.org/abs/1404.4021

  17. Lothaire, M.: Combinatorics on Words. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Provençal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Brlek, S., Lafrenière, N., Provençal, X. (2015). Palindromic Complexity of Trees. In: Potapov, I. (eds) Developments in Language Theory. DLT 2015. Lecture Notes in Computer Science(), vol 9168. Springer, Cham. https://doi.org/10.1007/978-3-319-21500-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21500-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21499-3

  • Online ISBN: 978-3-319-21500-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics