Abstract
We consider finite trees with edges labeled by letters on a finite alphabet \(\varSigma \). Each pair of nodes defines a unique labeled path whose trace is a word of the free monoid \(\varSigma ^*\). The set of all such words defines the language of the tree. In this paper, we investigate the palindromic complexity of trees and provide hints for an upper bound on the number of distinct palindromes in the language of a tree.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Allouche, J.P., Baake, M., Cassaigne, J., Damanik, D.: Palindrome complexity. Theoretical Computer Science 292(1), 9–31 (2003)
Balková, L., Pelantová, E., Starosta, S.: Proof of the Brlek-Reutenauer conjecture. Theoretical Computer Science 475, 120–125 (2013)
Berthé, V., Vuillon, L.: Tilings and rotations on the torus: a two-dimensional generalization of Sturmian sequences. Discrete Mathematics 223(1–3), 27–53 (2000)
Brlek, S., Hamel, S., Nivat, M., Reutenauer, C.: On the palindromic complexity of infinite words. International Journal on Foundation of Computer Science 15(2), 293–306 (2004)
Brlek, S., Reutenauer, C.: Complexity and palindromic defect of infinite words. Theoretical Computer Science 412(4–5), 493–497 (2011)
Crochemore, M., Iliopoulos, C.S., Kociumaka, T., Kubica, M., Radoszewski, J., Rytter, W., Tyczyński, W., Waleń, T.: The maximum number of squares in a tree. In: Kärkkäinen, J., Stoye, J. (eds.) CPM 2012. LNCS, vol. 7354, pp. 27–40. Springer, Heidelberg (2012)
de Luca, A.: Sturmian words: Structure, combinatorics, and their arithmetics. Theoretical Computer Science 183(1), 45–82 (1997)
Domenjoud, E., Provençal, X., Vuillon, L.: Palindromic language of thin discrete planes (to appear)
Domenjoud, E., Vuillon, L.: Geometric palindromic closure. Uniform Distribution Theory 7(2), 109–140 (2012)
Droubay, X., Justin, J., Pirillo, G.: Episturmian words and some constructions of de Luca and Rauzy. Theoretical Computer Science 255(1–2), 539–553 (2001)
Erdös, P., Turán, P.: On a problem of Sidon in additive number theory, and on some related problems. Journal of the London Mathematical Society. Second Series 16, 212–215 (1941)
Fraenkel, A.S., Simpson, J.: How many squares can a string contain? J. Combin. Theory Ser. A 82(1), 112–120 (1998)
Glen, A., Justin, J.: Episturmian words: a survey. Theoretical Informatics and Applications. Informatique Théorique et Applications 43(3), 403–442 (2009)
Gowers, T.: What are dense Sidon subsets of \(\{1,2, \ldots , n\}\) like? (2012). gowers.wordpress.com/2012/07/13/what-are-dense-sidon-subsets-of-12-n-like/
Hof, A., Knill, O., Simon, B.: Singular continuous spectrum for palindromic Schrödinger operators. Comm. in Mathematical Physics 174(1), 149–159 (1995)
Labbé, S., Reutenauer, C.: A \(d\)-dimensional extension of Christoffel words. Discrete & Computational Geometry (2015). http://arxiv.org/abs/1404.4021
Lothaire, M.: Combinatorics on Words. Cambridge University Press, Cambridge (1997)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Brlek, S., Lafrenière, N., Provençal, X. (2015). Palindromic Complexity of Trees. In: Potapov, I. (eds) Developments in Language Theory. DLT 2015. Lecture Notes in Computer Science(), vol 9168. Springer, Cham. https://doi.org/10.1007/978-3-319-21500-6_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-21500-6_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-21499-3
Online ISBN: 978-3-319-21500-6
eBook Packages: Computer ScienceComputer Science (R0)