On the Effective Properties of Elastic Materials and Structures at the Micro- and Nano-Scale Considering Various Models of Surface Elasticity

  • Victor A. Eremeyev
Part of the Springer Tracts in Mechanical Engineering book series (STME)


We discuss influence of surface properties on effective (apparent) properties of materials and structures such as Young’s modulus of a porous rod or bending stiffness of a nanosized plate. We consider various models of surface elasticity by Gurtin–Murdoch, Steigman–Ogden, and its generalizations. Difference between models is discussed, and formulas for some effective properties are given.


Surface Stress Effective Property Surface Elasticity Infinitesimal Deformation Effective Material Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Altenbach H, Eremeyev VA (2011) On the shell theory on the nanoscale with surface stresses. Int J Eng Sci 49(12):1294–1301MathSciNetCrossRefGoogle Scholar
  2. 2.
    Altenbach H, Eremeev V, Morozov NF (2010) On equations of the linear theory of shells with surface stresses taken into account. Mech Solids 45(3):331–342CrossRefGoogle Scholar
  3. 3.
    Altenbach H, Eremeyev VA, Lebedev LP (2010) On the existence of solution in the linear elasticity with surface stresses. Zeitschrift für Angewandte Mathematik und Mechanik 90(3):231–240zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Altenbach H, Eremeyev VA, Lebedev LP (2011) On the spectrum and stiffness of an elastic body with surface stresses. Zeitschrift für Angewandte Mathematik und Mechanik 91(9):699–710zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Altenbach H, Eremeyev VA, Morozov NF (2012) Surface viscoelasticity and effective properties of thin-walled structures at the nanoscale. Int J Eng Sci 59:83–89MathSciNetCrossRefGoogle Scholar
  6. 6.
    Arroyo M, Belytschko T (2002) An atomistic-based finite deformation membrane for single layer crystalline films. J Mech Phys Solids 50(9):1941–1977zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Bažant ZP (2000) Size effect. Int J Solids Struct 37(1):69–80zbMATHGoogle Scholar
  8. 8.
    Bhushan B (ed) (2007) Handbook springer of nanotechnology. Springer, BerlinGoogle Scholar
  9. 9.
    Bhushan B, Jung YC, Koch K (2009) Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion. Philos Trans R Soc A 367(1894):1631–1672CrossRefGoogle Scholar
  10. 10.
    Craighead HG (2000) Nanoelectromechanical systems. Science 290(5496):1532–1535CrossRefGoogle Scholar
  11. 11.
    Cuenot S, Frétigny C, Demoustier-Champagne S, Nysten B (2004) Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys Rev B 69(16):165410CrossRefGoogle Scholar
  12. 12.
    Dastjerdi R, Montazer M (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf B Biointerfaces 79(1):5–18CrossRefGoogle Scholar
  13. 13.
    dell’Isola F, Seppecher P (1997) Edge contact forces and quasi-balanced power. Meccanica 32(1):33–52Google Scholar
  14. 14.
    dell’Isola F, Seppecher P, Madeo A (2012) How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: approach “à la d’Alembert”. Zeitschrift für Angewandte Mathematik und Physik 63:1119–1141Google Scholar
  15. 15.
    de Poisson SD (1831) Nouvelle théorie de l’action capillaire. Bachelier Père et Fils, ParisGoogle Scholar
  16. 16.
    Duan HL, Wang J, Karihaloo BL (2008) Theory of elasticity at the nanoscale. In: Advances in applied mechanics, vol 42. Elsevier, Amsterdam, pp 1–68Google Scholar
  17. 17.
    Ekinci KL, Roukes ML (2005) Nanoelectromechanical systems. Rev Sci Instrum 76(6):061101CrossRefGoogle Scholar
  18. 18.
    Eremeyev VA (2015) On effective properties of materials at the nano- and microscales considering surface effects. Acta Mechanica. doi: 10.1007/s00707-015-1427-y Google Scholar
  19. 19.
    Eremeyev V, Morozov N (2010) The effective stiffness of a nanoporous rod. Dokl Phys 55(6):279–282CrossRefGoogle Scholar
  20. 20.
    Eremeyev VA, Lebedev LP (2013) Existence of weak solutions in elasticity. Math Mech Solids 18(2):204–217MathSciNetCrossRefGoogle Scholar
  21. 21.
    Ganesh VA, Raut HK, Nair AS, Ramakrishna S (2011) A review on self-cleaning coatings. J Mater Chem 21(41):16304–16322CrossRefGoogle Scholar
  22. 22.
    de Gennes PG (1981) Some effects of long range forces on interfacial phenomena. J Phys Lett 42(16):377–379CrossRefGoogle Scholar
  23. 23.
    de Gennes PG, Brochard-Wyart F, Quéré D (2004) Capillarity and wetting phenomena: drops, bubbles, pearls, waves. Springer, New YorkCrossRefGoogle Scholar
  24. 24.
    Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties, 2nd edn. Cambridge solid state science series. Cambridge University Press, CambridgeGoogle Scholar
  25. 25.
    Gurtin ME, Murdoch AI (1975) A continuum theory of elastic material surfaces. Arch Ration Mech Anal 57(4):291–323zbMATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Ibach H (1997) The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures. Surf Sci Rep 29(5):195–263CrossRefGoogle Scholar
  27. 27.
    Javili A, dell’Isola F, Steinmann P (2013) Geometrically nonlinear higher-gradient elasticity with energetic boundaries. J Mech Phys Solids 61(12), 2381–2401Google Scholar
  28. 28.
    Javili A, McBride A, Steinmann P (2012) Thermomechanics of solids with lower-dimensional energetics: On the importance of surface, interface, and curve structures at the nanoscale. A unifying review. Appl Mech Rev 65:010802-1–010802-31Google Scholar
  29. 29.
    Javili A, Steinmann P (2010) A finite element framework for continua with boundary energies. Part II: the three-dimensional case. Comput Methods Appl Mech Eng 199(9–12):755–765zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Javili A, Steinmann P (2011) A finite element framework for continua with boundary energies. Part III: the thermomechanical case. Comput Methods Appl Mech Eng 200(21):1963–1977zbMATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Jing GY, Duan HL, Sun XM, Zhang ZS, Xu J, Wang YDLJX, Yu DP (2006) Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy. Phys Rev B 73(23):235409-6CrossRefGoogle Scholar
  32. 32.
    Kang X, Zi WW, Xu ZG, Zhang HL (2007) Controlling the micro/nanostructure of self-cleaning polymer coating. Appl Surf Sci 253(22):8830–8834CrossRefGoogle Scholar
  33. 33.
    Kim C, Ru C, Schiavone P (2013) A clarification of the role of crack-tip conditions in linear elasticity with surface effects. Math Mech Solids 18(1):59–66MathSciNetCrossRefGoogle Scholar
  34. 34.
    Kushch VI, Sevostianov I, Chernobai VS (2014) Effective conductivity of composite with imperfect contact between elliptic fibers and matrix: Maxwell’s homogenization scheme. Int J Eng Sci 83:146–161MathSciNetCrossRefGoogle Scholar
  35. 35.
    Kushch VI, Chernobai VS, Mishuris GS (2014) Longitudinal shear of a composite with elliptic nanofibers: local stresses and effective stiffness. Int J Eng Sci 84:79–94CrossRefGoogle Scholar
  36. 36.
    Laplace PS (1805) Sur l’action capillaire. supplément à la théorie de l’action capillaire. In: Traité de mécanique céleste, vol 4. Supplement 1, Livre X. Gauthier–Villars et fils, Paris, pp 771–777Google Scholar
  37. 37.
    Laplace PS (1806) À la théorie de l’action capillaire. supplément à la théorie de l’action capillaire. In: Traité de mécanique céleste, vol 4. Supplement 2, Livre X. Gauthier–Villars et fils, Paris, pp 909–945Google Scholar
  38. 38.
    Liu K, Jiang L (2012) Bio-inspired self-cleaning surfaces. Ann Rev Mater Res 42:231–263CrossRefGoogle Scholar
  39. 39.
    Longley WR, Name RGV (eds) (1928) The collected works of J. Willard Gibbs, Ph.D., LL.D. Thermodynamics, vol I. Longmans, New YorkGoogle Scholar
  40. 40.
    Ma X, Liu A, Xu H, Li G, Hu M, Wu G (2008) A large-scale-oriented ZnO rod array grown on a glass substrate via an in situ deposition method and its photoconductivity. Mater Res Bull 43(8):2272–2277CrossRefGoogle Scholar
  41. 41.
    Miller RE, Shenoy VB (2000) Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11(3):139CrossRefGoogle Scholar
  42. 42.
    Mindlin RD (1965) Second gradient of strain and surface-tension in linear elasticity. Int J Solids Struct 1(4):417–438CrossRefGoogle Scholar
  43. 43.
    Mishuris GS, Kuhn G (2001) Asymptotic behaviour of the elastic solution near the tip of a crack situated at a nonideal interface. Zeitschrift für Angewandte Mathematik und Mechanik 81(12):811–826zbMATHMathSciNetCrossRefGoogle Scholar
  44. 44.
    Özgür Ü, Alivov YI, Liu C, Teke A, Reshchikov M, Doğan S, Avrutin V, Cho SJ, Morkoc H (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98(4):041301CrossRefGoogle Scholar
  45. 45.
    Rowlinson JS, Widom B (2003) Molecular theory of capillarity. Dover, New YorkGoogle Scholar
  46. 46.
    Rubin M, Benveniste Y (2004) A Cosserat shell model for interphases in elastic media. J Mech Phys Solids 52(5):1023–1052zbMATHMathSciNetCrossRefGoogle Scholar
  47. 47.
    Schiavone P, Ru CQ (2009) Solvability of boundary value problems in a theory of plane-strain elasticity with boundary reinforcement. Int J Eng Sci 47(11):1331–1338zbMATHMathSciNetCrossRefGoogle Scholar
  48. 48.
    Sfyris D, Sfyris G, Galiotis C (2014) Curvature dependent surface energy for a free standing monolayer graphene: some closed form solutions of the non-linear theory. Int J Non Linear Mech 67:186–197CrossRefGoogle Scholar
  49. 49.
    Shenoy VB (2005) Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys Rev B 71(9):094104CrossRefGoogle Scholar
  50. 50.
    Spinelli P, Verschuuren M, Polman A (2012) Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators. Nat Commun 3:692CrossRefGoogle Scholar
  51. 51.
    Steigmann DJ, Ogden RW (1997) Plane deformations of elastic solids with intrinsic boundary elasticity. Proc Roy Soc A 453(1959):853–877MathSciNetCrossRefGoogle Scholar
  52. 52.
    Steigmann DJ, Ogden RW (1999) Elastic surface-substrate interactions. Proc R Soc A 455(1982):437–474MathSciNetCrossRefGoogle Scholar
  53. 53.
    Tan LK, Kumar MK, An WW, Gao H (2010) Transparent, well-aligned TiO2 nanotube arrays with controllable dimensions on glass substrates for photocatalytic applications. ACS Appl Mater Interfaces 2(2):498–503CrossRefGoogle Scholar
  54. 54.
    Wang ZL, Song J (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771):242–246CrossRefGoogle Scholar
  55. 55.
    Wang J, Duan HL, Huang ZP, Karihaloo BL (2006) A scaling law for properties of nano-structured materials. Proc R Soc A 462(2069):1355–1363CrossRefGoogle Scholar
  56. 56.
    Wang X, Wang X, Zhou J, Song J, Liu J, Xu N, Wang ZL (2006) Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett 6(12):2768–2772CrossRefGoogle Scholar
  57. 57.
    Wang J, Huang Z, Duan H, Yu S, Feng X, Wang G, Zhang W, Wang T (2011) Surface stress effect in mechanics of nanostructured materials. Acta Mech Solida Sinica 24:52–82CrossRefGoogle Scholar
  58. 58.
    Young T (1805) An essay on the cohesion of fluids. Philos Trans R Soc Lond 95:65–87CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Victor A. Eremeyev
    • 1
    • 2
  1. 1.Otto von Guericke University MagdeburgMagdeburgGermany
  2. 2.South Scientific Centre of RASci & South Federal UniversityRostov on DonRussia

Personalised recommendations